Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Molecules ; 22(7)2017 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-28737669

RESUMO

Temporin L (TempL) is a 13 residue Host Defense Peptide (HDP) isolated from the skin of frogs. It has a strong affinity for lipopolysaccharides (LPS), which is related to its high activity against Gram-negative bacteria and also to its strong tendency to neutralize the pro-inflammatory response caused by LPS release from inactivated bacteria. A designed analog with the Q3K substitution shows an enhancement in both these activities. In the present paper, Molecular Dynamics (MD) simulations have been used to investigate the origin of these improved properties. To this end, we have studied the behavior of the peptides both in water solution and in the presence of LPS lipid-A bilayers, demonstrating that the main effect through which the Q3K substitution improves the peptide activities is the destabilization of peptide aggregates in water.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Peptídeos/química , Proteínas/química , Água/química , Lipopolissacarídeos/química
2.
Hum Mol Genet ; 23(16): 4315-27, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24705357

RESUMO

RASopathies, a family of disorders characterized by cardiac defects, defective growth, facial dysmorphism, variable cognitive deficits and predisposition to certain malignancies, are caused by constitutional dysregulation of RAS signalling predominantly through the RAF/MEK/ERK (MAPK) cascade. We report on two germline mutations (p.Gly39dup and p.Val55Met) in RRAS, a gene encoding a small monomeric GTPase controlling cell adhesion, spreading and migration, underlying a rare (2 subjects among 504 individuals analysed) and variable phenotype with features partially overlapping Noonan syndrome, the most common RASopathy. We also identified somatic RRAS mutations (p.Gly39dup and p.Gln87Leu) in 2 of 110 cases of non-syndromic juvenile myelomonocytic leukaemia, a childhood myeloproliferative/myelodysplastic disease caused by upregulated RAS signalling, defining an atypical form of this haematological disorder rapidly progressing to acute myeloid leukaemia. Two of the three identified mutations affected known oncogenic hotspots of RAS genes and conferred variably enhanced RRAS function and stimulus-dependent MAPK activation. Expression of an RRAS mutant homolog in Caenorhabditis elegans enhanced RAS signalling and engendered protruding vulva, a phenotype previously linked to the RASopathy-causing SHOC2(S2G) mutant. Overall, these findings provide evidence of a functional link between RRAS and MAPK signalling and reveal an unpredicted role of enhanced RRAS function in human disease.


Assuntos
Carcinogênese/genética , Mutação/fisiologia , Fenótipo , Proteínas ras/genética , Animais , Caenorhabditis elegans , Estudos de Coortes , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mielomonocítica Juvenil/genética , MAP Quinase Quinase Quinases/metabolismo , Síndrome de Noonan/genética , Proteína Oncogênica v-akt/metabolismo , Transdução de Sinais/genética , Proteínas ras/química , Proteínas ras/metabolismo
3.
J Biol Chem ; 288(34): 24936-47, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23828197

RESUMO

Glutathione transferases (GSTs) are protection enzymes capable of conjugating glutathione (GSH) to toxic compounds. During evolution an important catalytic cysteine residue involved in GSH activation was replaced by serine or, more recently, by tyrosine. The utility of these replacements represents an enigma because they yield no improvements in the affinity toward GSH or in its reactivity. Here we show that these changes better protect the cell from nitric oxide (NO) insults. In fact the dinitrosyl·diglutathionyl·iron complex (DNDGIC), which is formed spontaneously when NO enters the cell, is highly toxic when free in solution but completely harmless when bound to GSTs. By examining 42 different GSTs we discovered that only the more recently evolved Tyr-based GSTs display enough affinity for DNDGIC (KD < 10(-9) M) to sequester the complex efficiently. Ser-based GSTs and Cys-based GSTs show affinities 10(2)-10(4) times lower, not sufficient for this purpose. The NO sensitivity of bacteria that express only Cys-based GSTs could be related to the low or null affinity of their GSTs for DNDGIC. GSTs with the highest affinity (Tyr-based GSTs) are also over-represented in the perinuclear region of mammalian cells, possibly for nucleus protection. On the basis of these results we propose that GST evolution in higher organisms could be linked to the defense against NO.


Assuntos
Evolução Molecular , Glutationa Transferase/química , Óxido Nítrico/química , Animais , Bactérias/enzimologia , Bactérias/genética , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Humanos , Óxido Nítrico/genética , Óxido Nítrico/metabolismo
4.
Parkinsonism Relat Disord ; 72: 75-79, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32120303

RESUMO

OBJECTIVE: To investigate the molecular cause(s) underlying a severe form of infantile-onset parkinsonism and characterize functionally the identified variants. METHODS: A trio-based whole exome sequencing (WES) approach was used to identify the candidate variants underlying the disorder. In silico modeling, and in vitro and in vivo studies were performed to explore the impact of these variants on protein function and relevant cellular processes. RESULTS: WES analysis identified biallelic variants in WARS2, encoding the mitochondrial tryptophanyl tRNA synthetase (mtTrpRS), a gene whose mutations have recently been associated with multiple neurological phenotypes, including childhood-onset, levodopa-responsive or unresponsive parkinsonism in a few patients. A substantial reduction of mtTrpRS levels in mitochondria and reduced OXPHOS function was demonstrated, supporting their pathogenicity. Based on the infantile-onset and severity of the phenotype, additional variants were considered as possible genetic modifiers. Functional assessment of a selected panel of candidates pointed to a de novo missense mutation in CHRNA6, encoding the α6 subunit of neuronal nicotinic receptors, which are involved in the cholinergic modulation of dopamine release in the striatum, as a second event likely contributing to the phenotype. In silico, in vitro (Xenopus oocytes and GH4C1 cells) and in vivo (C. elegans) analyses demonstrated the disruptive effects of the mutation on acetylcholine receptor structure and function. CONCLUSION: Our findings consolidate the association between biallelic WARS2 mutations and movement disorders, and suggest CHRNA6 as a genetic modifier of the phenotype.


Assuntos
Transtornos Parkinsonianos/genética , Receptores Nicotínicos/genética , Triptofano-tRNA Ligase/genética , Idade de Início , Criança , Humanos , Masculino , Mutação , Índice de Gravidade de Doença , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa