Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 28(26): 40088-40098, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33379542

RESUMO

In this work, we demonstrate the high-throughput fabrication of 3D microparticles using a scanning two-photon continuous flow lithography (STP-CFL) technique in which microparticles are shaped by scanning the laser beam at the interface of laminar co-flows. The results demonstrate the ability of STP-CFL to manufacture high-resolution complex geometries of cell carriers that possess distinct regions with different functionalities. A new approach is presented for printing out-of-plane features on the microparticles. The approach eliminates the use of axial scanning stages, which are not favorable since they induce fluctuations in the flowing polymer media and their scanning speed is slower than the speed of galvanometer mirror scanners.

2.
Nat Commun ; 13(1): 1041, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210416

RESUMO

Mechanical metamaterials have been designed to achieve custom Poisson's ratios via the deformation of their microarchitecture. These designs, however, have yet to achieve the capability of exhibiting Poisson's ratios that alternate by design both temporally and spatially according to deformation. This capability would enable dynamic shape-morphing applications including smart materials that process mechanical information according to multiple time-ordered output signals without requiring active control or power. Herein, both periodic and graded metamaterials are introduced that leverage principles of differential stiffness and self-contact to passively achieve sequential deformations, which manifest as user-specified alternating Poisson's ratios. An analytical approach is provided with a complementary software tool that enables the design of such materials in two- and three-dimensions. This advance in design capability is due to the fact that the tool computes sequential deformations more than an order of magnitude faster than contemporary finite-element packages. Experiments on macro- and micro-scale designs validate their predicted alternating Poisson's ratios.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa