Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(44): 17507-17511, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31644274

RESUMO

Analytical tools for quantitative measurements of glutamate, the principal excitatory neurotransmitter in the brain, are lacking. Here, we introduce a new enzyme-based amperometric sensor technique for the counting of glutamate molecules stored inside single synaptic vesicles. In this method, an ultra-fast enzyme-based glutamate sensor is placed into a solution of isolated synaptic vesicles, which stochastically rupture at the sensor surface in a potential-dependent manner at a constant negative potential. The continuous amperometric signals are sampled at high speed (10 kHz) to record sub-millisecond spikes, which represent glutamate release from single vesicles that burst open. Glutamate quantification is achieved by a calibration curve that is based on measurements of glutamate release from vesicles pre-filled with various glutamate concentrations. Our measurements show that an isolated single synaptic vesicle encapsulates about 8000 glutamate molecules and is comparable to the measured exocytotic quantal glutamate release in amperometric glutamate sensing in the nucleus accumbens of mouse brain tissue. Hence, this new methodology introduces the means to quantify ultra-small amounts of glutamate and to study synaptic vesicle physiology, pathogenesis, and drug treatments for neuronal disorders where glutamate is involved.


Assuntos
Aminoácido Oxirredutases/química , Técnicas Eletroquímicas/métodos , Ácido Glutâmico/análise , Neurotransmissores/análise , Vesículas Sinápticas/química , Animais , Química Encefálica , Carbono/química , Técnicas Eletroquímicas/instrumentação , Eletrodos , Ácido Glutâmico/química , Ouro/química , Masculino , Nanopartículas Metálicas/química , Camundongos Endogâmicos C57BL , Neurotransmissores/química , Ratos Sprague-Dawley , Lipossomas Unilamelares/química
2.
Pflugers Arch ; 470(1): 125-134, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28951968

RESUMO

Chemical signaling strength during intercellular communication can be regulated by secretory cells through controlling the amount of signaling molecules that are released from a secretory vesicle during the exocytosis process. In addition, the chemical signal can also be influenced by the amount of neurotransmitters that is accumulated and stored inside the secretory vesicle compartment. Here, we present the development of analytical methodologies and cell model systems that have been applied in neuroscience research for gaining better insights into the biophysics and the molecular mechanisms, which are involved in the regulatory aspects of the exocytosis machinery affecting the output signal of chemical transmission at neuronal and neuroendocrine cells.


Assuntos
Grânulos Cromafim/metabolismo , Técnicas Eletroquímicas/métodos , Exocitose , Potenciais de Ação , Animais , Grânulos Cromafim/fisiologia , Citofotometria/instrumentação , Citofotometria/métodos , Técnicas Eletroquímicas/instrumentação , Humanos
3.
J Am Chem Soc ; 137(13): 4344-6, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25811247

RESUMO

We present the electrochemical response to single adrenal chromaffin vesicles filled with catecholamine hormones as they are adsorbed and rupture on a 33 µm diameter disk-shaped carbon electrode. The vesicles adsorb onto the electrode surface and sequentially spread out over the electrode surface, trapping their contents against the electrode. These contents are then oxidized, and a current (or amperometric) peak results from each vesicle that bursts. A large number of current transients associated with rupture of single vesicles (86%) are observed under the experimental conditions used, allowing us to quantify the vesicular catecholamine content.


Assuntos
Catecolaminas/química , Células Cromafins/química , Glândulas Suprarrenais/citologia , Adsorção , Animais , Carbono/química , Bovinos , Eletroquímica , Eletrodos
4.
Angew Chem Int Ed Engl ; 54(41): 11978-82, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26266819

RESUMO

The quantification of vesicular transmitter content is important for studying the mechanisms of neurotransmission and malfunction in disease, and yet it is incredibly difficult to measure the tiny amounts of neurotransmitters in the attoliter volume of a single vesicle, especially in the cell environment. We introduce a novel method, intracellular vesicle electrochemical cytometry. A nanotip conical carbon-fiber microelectrode was used to electrochemically measure the total content of electroactive neurotransmitters in individual nanoscale vesicles in single PC12 cells as these vesicles lysed on the electrode inside the living cell. The results demonstrate that only a fraction of the quantal neurotransmitter content is released during exocytosis. These data support the intriguing hypothesis that the vesicle does not open all the way during the normal exocytosis process, thus resulting in incomplete expulsion of the vesicular contents.


Assuntos
Catecolaminas/análise , Técnicas Eletroquímicas/instrumentação , Neurotransmissores/análise , Análise de Célula Única/instrumentação , Animais , Desenho de Equipamento , Exocitose , Microeletrodos , Células PC12 , Ratos
5.
J Vis Exp ; (132)2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29553491

RESUMO

Amperometry recording of cells subjected to osmotic shock show that secretory cells respond to this physical stress by reducing the exocytosis activity and the amount of neurotransmitter released from vesicles in single exocytosis events. It has been suggested that the reduction in neurotransmitters expelled is due to alterations in membrane biophysical properties when cells shrink in response to osmotic stress and with assumptions made that secretory vesicles in the cell cytoplasm are not affected by extracellular osmotic stress. Amperometry recording of exocytosis monitors what is released from cells the moment a vesicle fuses with the plasma membrane, but does not provide information on the vesicle content before the vesicle fusion is triggered. Therefore, by combining amperometry recording with other complementary analytical methods that are capable of characterizing the secretory vesicles before exocytosis at cells is triggered offers a broader overview for examining how secretory vesicles and the exocytosis process are affected by osmotic shock. We here describe how complementing amperometry recording with intracellular electrochemical cytometry and transmission electron microscopy (TEM) imaging can be used to characterize alterations in secretory vesicles size and neurotransmitter content at chromaffin cells in relation to exocytosis activity before and after exposure to osmotic stress. By linking the quantitative information gained from experiments using all three analytical methods, conclusions were previously made that secretory vesicles respond to extracellular osmotic stress by shrinking in size and reducing the vesicle quantal size to maintain a constant vesicle neurotransmitter concentration. Hence, this gives some clarification regarding why vesicles, in response to osmotic stress, reduce the amount neurotransmitters released during exocytosis release. The amperometric recordings here indicate this is a reversible process and that vesicle after osmotic shock are refilled with neurotransmitters when placed cells are reverted into an isotonic environment.


Assuntos
Células Cromafins/metabolismo , Exocitose/fisiologia , Pressão Osmótica/fisiologia , Vesículas Secretórias/metabolismo , Transporte Biológico
6.
ACS Chem Neurosci ; 8(2): 368-375, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27966899

RESUMO

Secretory cells respond to hypertonic stress by cell shrinking, which causes a reduction in exocytosis activity and the amount of signaling molecules released from single exocytosis events. These changes in exocytosis have been suggested to result from alterations in biophysical properties of cell cytoplasm and plasma membrane, based on the assumption that osmotic stress does not affect the secretory vesicle content and size prior to exocytosis. To further investigate whether vesicles in secretory cells are affected by the osmolality of the extracellular environment, we used intracellular electrochemical cytometry together with transmission electron microscopy imaging to quantify and determine the catecholamine concentration of dense core vesicles in situ before and after cell exposure to osmotic stress. In addition, single cell amperometry recordings of exocytosis at chromaffin cells were used to monitor the effect on exocytosis activity and quantal release when cells were exposed to osmotic stress. Here we show that hypertonic stress hampers exocytosis secretion after the first pool of readily releasable vesicles have been fused and that extracellular osmotic stress causes catecholamine filled vesicles to shrink, mainly by reducing the volume of the halo solution surrounding the protein matrix in dense core vesicles. In addition, the vesicles demonstrate the ability to perform adjustments in neurotransmitter content during shrinking, and intracellular amperometry measurements in situ suggest that vesicles reduce the catecholamine content to maintain a constant concentration within the vesicle compartment. Hence, the secretory vesicles in the cell cytoplasm are highly affected and respond to extracellular osmotic stress, which gives a new perspective to the cause of reduction in quantal size by these vesicles when undergoing exocytosis.


Assuntos
Membrana Celular/fisiologia , Células Cromafins/efeitos dos fármacos , Vesículas Citoplasmáticas/metabolismo , Neurotransmissores/metabolismo , Pressão Osmótica , Animais , Catecolaminas/metabolismo , Bovinos , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Células Cultivadas , Vesículas Citoplasmáticas/efeitos dos fármacos , Vesículas Citoplasmáticas/ultraestrutura , Levodopa/farmacologia , Microscopia Eletrônica de Transmissão , Solução Salina Hipertônica/farmacologia , Vesículas Secretórias/efeitos dos fármacos , Vesículas Secretórias/metabolismo
7.
J Biomed Mater Res A ; 104(3): 620-629, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26507381

RESUMO

A recent approach to improve the osseointegration of implants is to utilize local drug administration. The presence of an osteoporosis drug may influence both bone quantity and quality at the bone/implant interface. Despite this, the performance of bone-anchoring implants is traditionally evaluated only by quantitative measurements. In the present study, the osteoporosis drug alendronate (ALN) was administrated from mesoporous titania thin films that were coated onto titanium implants. The effect that the drug had on biomineralization was explored both in vitro using simulated body fluid (SBF) and in vivo in a rat tibia model. The SBF study showed that the apatite formation was completely hindered at a high concentration of ALN (0.1 mg/mL). However, when ALN was administrated from the mesoporous coating the surface became completely covered with apatite. Ex vivo characterization of the bone/implant interface using Raman spectroscopy demonstrated that the presence of ALN enhanced the bone mineralization, and that the chemical signature of newly formed bone in the presence of ALN had a higher resemblance to the pre-existing mature bone than to the bone formed without drug. Taken together, this study demonstrates the importance of evaluating the quality of the formed bone to better understand the performance of implants. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A 104A: 620-629, 2016.


Assuntos
Alendronato/farmacologia , Interface Osso-Implante/fisiologia , Calcificação Fisiológica/efeitos dos fármacos , Animais , Apatitas/química , Líquidos Corporais/química , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/fisiologia , Humanos , Masculino , Porosidade , Técnicas de Microbalança de Cristal de Quartzo , Ratos Sprague-Dawley , Análise Espectral Raman , Titânio/química
8.
Biomatter ; 6: e1133394, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26727581

RESUMO

With the increasing elderly population an increase in the number of bony fractures associated to age-related diseases such as osteoporosis also follows. The relatively high stiffness of the acrylic bone cements used in these patients has been suggested to give raise to a suboptimal load distribution surrounding the cement in vivo, and hence contribute to clinical complications, such as additional fractures. The aim of this study was to develop a low-modulus bone cement, based on currently used, commercially available poly(methyl methacrylate) (PMMA) cements for vertebroplasty. To this end, acrylate end-functionalized oligo(trimethylene carbonate) (oTMC) was incorporated into the cements, and the resulting compressive mechanical properties were evaluated, as well as the cytotoxic and handling properties of selected formulations. Sixteen wt%oTMC was needed in the vertebroplastic cement Osteopal V to achieve an elastic modulus of 1063 MPa (SD 74), which gave a corresponding compressive strength of 46.1 MPa (SD 1.9). Cement extracts taken at 1 and 12 hours gave a reduced MG-63 cell viability in most cases, while extracts taken at 24 hours had no significant effect on cell behavior. The modification also gave an increase in setting time, from 14.7 min (SD 1.7) to 18.0 min (SD 0.9), and a decrease in maximum polymerization temperature, from 41.5°C (SD 3.4) to 30.7°C (SD 1.4). While further evaluation of other relevant properties, such as injectability and in vivo biocompatibility, remains to be done, the results presented herein are promising in terms of approaching clinically applicable bone cements with a lower stiffness.


Assuntos
Cimentos Ósseos/química , Teste de Materiais/métodos , Polimetil Metacrilato/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Cimentos Ósseos/farmacologia , Linhagem Celular , Força Compressiva/efeitos dos fármacos , Humanos , Polimetil Metacrilato/farmacologia , Vertebroplastia/instrumentação
9.
Acta Biomater ; 8(12): 4438-46, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22842030

RESUMO

Mesoporous materials are of high interest as implant coatings to receive an enhanced osseointegration. In this study, titanium implants coated with mesoporous TiO(2) thin films have been evaluated both in vitro and in vivo. Material characterization showed that, with partly crystalline TiO(2) (anatase), long-range-ordered hydrophilic mesoporous thin films with a pore size of 6nm were obtained. Evaluation of the mechanical resistance showed that the films were robust enough to withstand the standard implantation procedure. In vitro apatite formation was studied using simulated body fluids, showing that the pores are accessible for ions and that formation of apatite was increased due to the presence of the mesopores. An in vivo study using a rabbit model was executed in which the removal torque and histomorphometry were evaluated. The results show that the biomechanical stability of the TiO(2) coating was unaffected by the presence of mesopores and that osseointegration was achieved without any signs of inflammation.


Assuntos
Substitutos Ósseos/química , Teste de Materiais , Osseointegração , Titânio/química , Animais , Apatitas/química , Apatitas/metabolismo , Porosidade , Coelhos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa