Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pathogens ; 12(1)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36678438

RESUMO

Wild migratory birds have the capability to spread avian influenza virus (AIV) over long distances as well as transmit the virus to domestic birds. In this study, swab and tissue samples were obtained from 190 migratory birds during close surveillance in Egypt in response to the recent outbreaks of the highly pathogenic avian influenza (HPAI) H5N1 virus. The collected samples were tested for a variety of AIV subtypes (H5N1, H9N2, H5N8, and H6N2) as well as other pathogens such as NDV, IBV, ILT, IBDV, and WNV. Among all of the tested samples, the HPAI H5N1 virus was found in six samples; the other samples were found to be negative for all of the tested pathogens. The Egyptian HPAI H5N1 strains shared genetic traits with the HPAI H5N1 strains that are currently being reported in Europe, North America, Asia, and Africa in 2021-2022. Whole genome sequencing revealed markers associated with mammalian adaption and virulence traits among different gene segments, similar to those found in HPAI H5N1 strains detected in Europe and Africa. The detection of the HPAI H5N1 strain of clade 2.3.4.4b in wild birds in Egypt underlines the risk of the introduction of this strain into the local poultry population. Hence, there is reason to be vigilant and continue epidemiological and molecular monitoring of the AIV in close proximity to the domestic-wild bird interface.

2.
Virusdisease ; 33(4): 404-412, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36447812

RESUMO

Infectious laryngotracheitis (ILT) is a viral respiratory illness in poultry that causes massive financial losses. This research aimed to isolate and identify the ILT virus in suspected outbreaks of broiler flocks in Egypt during 2020-2021, besides investigating its genetic link with other circulating strains. Real-time-PCR was used to test 57 samples taken from unvaccinated broiler farms. Ten samples are positive for ILTV, and the virus is being isolated in SPF chicken embryos. The Sanger sequencing was used to conduct (partial) sequencing of the infected cell protein4 gene (ICP4) for eight isolates. Phylogenetic analysis conducted Maximum Likelihood, comparative sequencing analysis of ICP4 of strains under study with vaccination ILT reference strains reveled that all isolates were clustered into two major groups. The (OM291843and OM291846) clustered together with the chicken embryo origin vaccine strains (IV and V group). The remaining six strains belong to the TCO vaccine(I, II and III group). The total sequence similarity between the strains under study and the various Egyptian strains varied from (97 to 100%) while the similarity with TCO or chicken embryo origin -vaccine strains ranged from (95to 100%). There were no deletions detected in the 272-283-bp region of the ICP4 gene. Detection of arginine to methionine substitutions at position 180 (R180M) and change of Serine to Asparagine at position 227 (S227N) in the (OM291843 and OM291846) which were previously described in chicken embryo origin -vaccine strains. This reveals that field strains may have evolved from vaccine strains, notably identification of non-synonymous substitutions which might be linked to the virulence strains' attenuation. Finally, independent of geographical distribution, both chicken embryo origin-vaccine-like and TCO-Vaccine-like virus strains were circulating in Egyptian non-vaccinated broiler flocks in 2020 and 2021. Despite their genetic differences, both viruses caused significant illnesses in the field.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa