Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Am J Respir Crit Care Med ; 206(9): 1081-1095, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776514

RESUMO

Rationale: MUC5AC (mucin 5AC, oligomeric gel-forming) and MUC5B (mucin 5B, oligomeric gel-forming) are the predominant secreted polymeric mucins in mammalian airways. They contribute differently to the pathogenesis of various muco-obstructive and interstitial lung diseases, and their genes are separately regulated, but whether they are packaged together or in separate secretory granules is not known. Objectives: To determine the packaging of MUC5AC and MUC5B within individual secretory granules in mouse and human airways under varying conditions of inflammation and along the proximal-distal axis. Methods: Lung tissue was obtained from mice stimulated to upregulate mucin production by the cytokines IL-1ß and IL-13 or by porcine pancreatic elastase. Human lung tissue was obtained from donated normal lungs, biopsy samples of transplanted lungs, and explanted lungs from subjects with chronic obstructive pulmonary disease. MUC5AC and MUC5B were labeled with antibodies from different animal species or, in mice only, by transgenic chimeric mucin-fluorescent proteins and imaged using widefield deconvolution or Airyscan fluorescence microscopy. Measurements and Main Results: In both mouse and human airways, most secretory granules contained both mucins interdigitating within the granules. Smaller numbers of granules contained MUC5B alone, and even fewer contained MUC5AC alone. Conclusions: MUC5AC and MUC5B are variably stored both in the same and in separate secretory granules of both mice and humans. The high fraction of granules containing both mucins under a variety of conditions makes it unlikely that their secretion can be differentially controlled as a therapeutic strategy. This work also advances knowledge of the packaging of mucins within secretory granules to understand mechanisms of epithelial stress in the pathogenesis of chronic lung diseases.


Assuntos
Mucina-5B , Doença Pulmonar Obstrutiva Crônica , Humanos , Camundongos , Animais , Suínos , Mucina-5AC , Pulmão/metabolismo , Vesículas Secretórias/metabolismo , Mamíferos/metabolismo
2.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36361681

RESUMO

Aripiprazole is an atypical antipsychotic drug, which is prescribed for many psychiatric diseases such as schizophrenia and mania in bipolar disorder. It primarily acts as an agonist of dopaminergic and other G-protein coupled receptors. So far, an interaction with ligand- or voltage-gated ion channels has been classified as weak. Meanwhile, we identified aripiprazole in a preliminary test as a potent blocker of voltage-gated sodium channels. Here, we present a detailed analysis about the interaction of aripiprazole with the dominant voltage-gated sodium channel of heart muscle (hNav1.5). Electrophysiological experiments were performed by means of the patch clamp technique at human heart muscle sodium channels (hNav1.5), heterologously expressed in human TsA cells. Aripiprazole inhibits the hNav1.5 channel in a state- but not use-dependent manner. The affinity for the resting state is weak with an extrapolated Kr of about 55 µM. By contrast, the interaction with the inactivated state is strong. The affinities for the fast and slow inactivated state are in the low micromolar range (0.5-1 µM). Kinetic studies indicate that block development for the inactivated state must be described with a fast (ms) and a slow (s) time constant. Even though the time constants differ by a factor of about 50, the resulting affinity constants were nearly identical (in the range of 0.5 µM). Besides this, aripirazole also interacts with the open state of the channel. Using an inactivation deficit mutant, an affinity of about 1 µM was estimated. In summary, aripiprazole inhibits voltage-gated sodium channels at low micromolar concentrations. This property might add to its possible anticancer and neuroprotective properties.


Assuntos
Canais de Sódio Disparados por Voltagem , Humanos , Aripiprazol/farmacologia , Cinética , Técnicas de Patch-Clamp , Miocárdio , Bloqueadores dos Canais de Sódio/farmacologia
3.
FASEB J ; 34(9): 12785-12804, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32744386

RESUMO

Secretion of pulmonary surfactant in the alveoli of the lungs is essential to maintain lung function. Stretching of alveoli during lung inflation is the main trigger for surfactant secretion. Yet, the molecular mechanisms how mechanical distension of alveoli results in surfactant secretion are still elusive. The alveolar epithelium consists of alveolar epithelial type I (ATI) and surfactant secreting type II (ATII) cells. ATI, but not ATII cells, express caveolae, small plasma membrane invaginations that can respond to plasma membrane stresses and serve mechanotransductive roles. Within this study, we investigated the role of caveolae as mechanosensors in the alveolus. We generated a human caveolin-1 knockout ATI cell (hAELVicav-/- ) using CRISPR/Cas9. Wildtype (hAELViwt ) and hAELVicav-/- cells grown on flexible membranes responded to increasing stretch amplitudes with rises in intracellular Ca2+ . The response was less frequent and started at higher stretch amplitudes in hAELVicav-/- cells. Stretch-induced Ca2+ -signals depended on Ca2+ -entry via piezo1 channels, localized within caveolae in hAELViwt and primary ATI cells. Ca2+ -entry via piezo1 activated pannexin-1 hemichannels resulting in ATP release from ATI cells. ATP release was reduced in hAELVicav-/- cells. In co-cultures resembling the alveolar epithelium, released ATP stimulated Ca2+ signals and surfactant secretion from neighboring ATII cells when co-cultured with hAELViwt but not hAELVicav-/- cells. In summary, we propose that caveolae in ATI cells are mechanosensors within alveoli regulating stretch-induced surfactant secretion from ATII cells.


Assuntos
Células Epiteliais Alveolares , Cavéolas/metabolismo , Caveolina 1/metabolismo , Canais Iônicos/metabolismo , Surfactantes Pulmonares/metabolismo , Estresse Mecânico , Trifosfato de Adenosina/metabolismo , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/metabolismo , Animais , Linhagem Celular , Técnicas de Inativação de Genes , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
4.
FASEB J ; 34(8): 11227-11242, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32632966

RESUMO

Keratin filaments (KFs) comprise the intermediate filaments of epithelial cells and are well known for their cytoprotective properties and their mechanical resilience. Although, several studies have demonstrated KFs' remarkable tensile properties relatively little is known about acute implications of mechanical stretch on KFs in living cells. This includes structural effects on the KFs and their higher level assembly structures as well as posttranslational response mechanisms to possibly modify KF's properties. We subjected simple epithelial A549 lung cells to 30% unidirectional stretch and already after 10 seconds we observed morphological changes of the KF-network as well as structural effects on their desmosomal anchor sites-both apparently caused by the tensile strain. Interestingly, the effect on the desmosomes was attenuated after 30 seconds of cell stretch with a concomitant increase in phosphorylation of keratin8-S432, keratin18-S53, and keratin18-S34 without an apparent increase in keratin solubility. When mimicking the phosphorylation of keratin18-S34 the stretch-induced effect on the desmosomes could be diminished and probing the cell surface with atomic force microscopy showed a lowered elastic modulus. We conclude that the stretch-induced KF phosphorylation affects KF's tensile properties, probably to lower the mechanical load on strained desmosomal cell-cell contacts, and hence, preserve epithelial integrity.


Assuntos
Queratinas/metabolismo , Pulmão/metabolismo , Células A549 , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Células Epiteliais/metabolismo , Humanos , Filamentos Intermediários/metabolismo , Fosforilação/fisiologia
5.
FASEB J ; 33(4): 5755-5771, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30699302

RESUMO

The antibiotic bacitracin (Bac) inhibits cell wall synthesis of gram-positive bacteria. Here, we discovered a totally different activity of Bac: the neutralization of bacterial exotoxins. Bac prevented intoxication of mammalian cells with the binary enterotoxins Clostridium botulinum C2, C. perfringens ι, C. difficile transferase (CDT), and Bacillus anthracis lethal toxin. The transport (B) subunits of these toxins deliver their respective enzyme (A) subunits into cells. Following endocytosis, the B subunits form pores in membranes of endosomes, which mediate translocation of the A subunits into the cytosol. Bac inhibited formation of such B pores in lipid bilayers in vitro and in living cells, thereby preventing translocation of the A subunit into the cytosol. Bac preserved the epithelial integrity of toxin-treated CaCo-2 monolayers, a model for the human gut epithelium. In conclusion, Bac should be discussed as a therapeutic option against infections with medically relevant toxin-producing bacteria, including C. difficile and B. anthracis, because it inhibits bacterial growth and neutralizes the secreted toxins.-Schnell, L., Felix, I., Müller, B., Sadi, M., von Bank, F., Papatheodorou, P., Popoff, M. R., Aktories, K., Waltenberger, E., Benz, R., Weichbrodt, C., Fauler, M., Frick, M., Barth, H. Revisiting an old antibiotic: bacitracin neutralizes binary bacterial toxins and protects cells from intoxication.


Assuntos
Antibacterianos/farmacologia , Bacitracina/farmacologia , Toxinas Bacterianas/metabolismo , Substâncias Protetoras/farmacologia , Animais , Antígenos de Bactérias/metabolismo , Bacillus anthracis/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Chlorocebus aethiops , Clostridioides difficile/efeitos dos fármacos , Citosol/efeitos dos fármacos , Citosol/metabolismo , Endocitose/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Exotoxinas/metabolismo , Células HeLa , Humanos , Bicamadas Lipídicas/metabolismo , Transporte Proteico/efeitos dos fármacos , Células Vero
6.
Int J Mol Sci ; 21(14)2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674494

RESUMO

The distal lung provides an intricate structure for gas exchange in mammalian lungs. Efficient gas exchange depends on the functional integrity of lung alveoli. The cells in the alveolar tissue serve various functions to maintain alveolar structure, integrity and homeostasis. Alveolar epithelial cells secrete pulmonary surfactant, regulate the alveolar surface liquid (ASL) volume and, together with resident and infiltrating immune cells, provide a powerful host-defense system against a multitude of particles, microbes and toxicants. It is well established that all of these cells express purinergic P2 receptors and that purinergic signaling plays important roles in maintaining alveolar homeostasis. Therefore, it is not surprising that purinergic signaling also contributes to development and progression of severe pathological conditions like pulmonary inflammation, acute lung injury/acute respiratory distress syndrome (ALI/ARDS) and pulmonary fibrosis. Within this review we focus on the role of P2 purinergic signaling in the distal lung in health and disease. We recapitulate the expression of P2 receptors within the cells in the alveoli, the possible sources of ATP (adenosine triphosphate) within alveoli and the contribution of purinergic signaling to regulation of surfactant secretion, ASL volume and composition, as well as immune homeostasis. Finally, we summarize current knowledge of the role for P2 signaling in infectious pneumonia, ALI/ARDS and idiopathic pulmonary fibrosis (IPF).


Assuntos
Pulmão/metabolismo , Pulmão/patologia , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Humanos , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Pneumonia/metabolismo , Pneumonia/patologia , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Surfactantes Pulmonares/metabolismo
7.
J Physiol ; 596(20): 4893-4907, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30144063

RESUMO

KEY POINTS: Re-sensitization of P2X4 receptors depends on a protonation/de-protonation cycle Protonation and de-protonation of the receptors is achieved by internalization and recycling of P2X4 receptors via acidic compartments Protonation and de-protonation occurs at critical histidine residues within the extracellular loop of P2X4 receptors Re-sensitization is blocked in the presence of the receptor agonist ATP ABSTRACT: P2X4 receptors are members of the P2X receptor family of cation-permeable, ligand-gated ion channels that open in response to the binding of extracellular ATP. P2X4 receptors are implicated in a variety of biological processes, including cardiac function, cell death, pain sensation and immune responses. These physiological functions depend on receptor activation on the cell surface. Receptor activation is followed by receptor desensitization and deactivation upon removal of ATP. Subsequent re-sensitization is required to return the receptor into its resting state. Desensitization and re-sensitization are therefore crucial determinants of P2X receptor signal transduction and responsiveness to ATP. However, the molecular mechanisms controlling desensitization and re-sensitization are not fully understood. In the present study, we provide evidence that internalization and recycling via acidic compartments is essential for P2X4 receptor re-sensitization. Re-sensitization depends on a protonation/de-protonation cycle of critical histidine residues within the extracellular loop of P2X4 receptors that is mediated by receptor internalization and recycling. Interestingly, re-sensitization under acidic conditions is completely revoked by receptor agonist ATP. Our data support the physiological importance of the unique subcellular distribution of P2X4 receptors that is predominantly found within acidic compartments. Based on these findings, we suggest that recycling of P2X4 receptors regulates the cellular responsiveness in the sustained presence of ATP.


Assuntos
Receptores Purinérgicos P2X4/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Células HEK293 , Células HeLa , Humanos , Transporte Proteico , Prótons , Receptores Purinérgicos P2X4/química , Transdução de Sinais
8.
BMC Cancer ; 18(1): 140, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29409464

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the fourth leading cause of cancer related deaths worldwide and prognosis in advanced tumor stage still remains poor. Since CK1 isoforms have been reported to be deregulated in several tumor entities CK1 has emerged as a novel drug target in cancer therapy. In this study we set out to investigate whether CK1α might have the potential to serve as prognostic marker. METHODS: CK1α RNA and protein expression levels in healthy and tumor tissue of CRC patients were analyzed using quantitative real-time PCR and Western Blot analysis, respectively. Prognostic relevance was investigated by correlating obtained CK1α expression levels with patients' survival rate generating Kaplan-Meier survival plots. RESULTS: It could be shown that CK1α is overexpressed in colorectal tumor tissue compared to normal tissue and CK1α overexpression in tumor tissue correlates with poor survival in CRC patients. Results become more significant when only considering patients with high-grade tumors, as well as patients assigned to UICC II and UICC III stage. Furthermore, Cox regression analysis revealed that CK1α is an independent prognostic factor. In addition, tumors expressing decreased levels of the kinase reveal positive effects on overall survival when localized in the right colon compared to those in the left side. CONCLUSION: In summary, this study provides evidence for the first time that CK1α RNA levels might serve as prognostic marker for CRC.


Assuntos
Biomarcadores Tumorais/genética , Caseína Quinase Ialfa/genética , Neoplasias Colorretais/genética , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Caseína Quinase Ialfa/metabolismo , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/patologia , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico
9.
Mediators Inflamm ; 2018: 2052356, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30002598

RESUMO

BACKGROUND: Polymorphonuclear granulocytes (PMN) play a crucial role in host defense. Physiologically, exposure of PMN to the complement activation product C5a results in a protective response against pathogens, whereas in the case of systemic inflammation, excessive C5a substantially impairs neutrophil functions. To further elucidate the inability of PMN to properly respond to C5a, this study investigates the role of the cellular membrane potential of PMN in response to C5a. METHODS: Electrophysiological changes in cellular and mitochondrial membrane potential and intracellular pH of PMN from human healthy volunteers were determined by flow cytometry after exposure to C5a. Furthermore, PMN from male Bretoncelles-Meishan-Willebrand cross-bred pigs before and three hours after severe hemorrhagic shock were analyzed for their electrophysiological response. RESULTS: PMN showed a significant dose- and time-dependent depolarization in response to C5a with a strong response after one minute. The chemotactic peptide fMLP also evoked a significant shift in the membrane potential of PMN. Acidification of the cellular microenvironment significantly enhanced depolarization of PMN. In a clinically relevant model of porcine hemorrhagic shock, the C5a-induced changes in membrane potential of PMN were markedly diminished compared to healthy littermates. Overall, these membrane potential changes may contribute to PMN dysfunction in an inflammatory environment.


Assuntos
Complemento C5a/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Choque Hemorrágico/metabolismo , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Eletrofisiologia , Citometria de Fluxo , Humanos , Concentração de Íons de Hidrogênio , Masculino , Suínos
10.
Am J Respir Cell Mol Biol ; 56(3): 372-382, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27814452

RESUMO

The apical surface liquid (ASL) layer covers the airways and forms a first line of defense against pathogens. Maintenance of ASL volume by airway epithelia is essential for maintaining lung function. The proteolytic activation of epithelial Na+ channels is believed to be the dominating mechanism to cope with increases in ASL volumes. Alternative mechanisms, in particular increases in epithelial osmotic water permeability (Posm), have so far been regarded as rather less important. However, most studies mainly addressed immediate effects upon apical volume expansion (AVE) and increases in ASL. This study addresses the response of lung epithelia to long-term AVE. NCI-H441 cells and primary human tracheal epithelial cells, both cultivated in air-liquid interface conditions, were used as models for the lung epithelium. AVE was established by adding isotonic solution to the apical surface of differentiated lung epithelia, and time course of ASL volume restoration was assessed by the deuterium oxide dilution method. Concomitant ion transport was investigated in Ussing chambers. We identified a low resorptive state immediately after AVE, which coincided with proteolytic ion transport activation within 10-15 minutes after AVE. The main clearance of excess ASL occurred during a delayed (hours after AVE) high resorptive state, which did not correlate with ion transport activation. Instead, high resorptive state onset coincided with an increase in Posm, which depended on aquaporin up-regulation. In summary, our data demonstrate that, aside from ion transport activation, modulation of Posm is a major mechanism to compensate for long-term AVE in lung epithelia.


Assuntos
Epitélio/metabolismo , Pulmão/metabolismo , Reologia , Água/metabolismo , Amilorida/farmacologia , Aquaporinas/metabolismo , Canais Epiteliais de Sódio/metabolismo , Epitélio/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Pulmão/efeitos dos fármacos , Osmose/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Reologia/efeitos dos fármacos , Propriedades de Superfície , Fatores de Tempo
11.
Invest New Drugs ; 35(3): 277-289, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28164251

RESUMO

Background and Purpose IC261 (3-[(2,4,6-trimethoxyphenyl)methylidenyl]-indolin-2-one) has previously been introduced as an isoform specific inhibitor of casein kinase 1 (CK1) causing cell cycle arrest or cell death of established tumor cell lines. However, it is reasonable to assume that not all antitumor activities of IC261 are mediated by the inhibition of CK1. Meanwhile there is growing evidence that functional voltage-gated sodium channels are also implicated in the progression of tumors as their blockage suppresses tumor migration and invasion of different tumor cell lines. Thus, we asked whether IC261 functionally inhibits voltage-gated sodium channels. Experimental Approach Electrophysiological experiments were performed using the patch-clamp technique at human heart muscle sodium channels heterologously expressed in human TsA cells. Key Results IC261 inhibits sodium channels in a state-dependent manner. IC261 does not interact with the open channel and has only a low affinity for the resting state of the hNav1.5 (human voltage-gated sodium channel; Kr: 120 µM). The efficacy of IC261 strongly increases with membrane depolarisation, indicating that the inactivated state is an important target. The results of different experimental approaches finally revealed an affinity of IC261 to the inactivated state between 1 and 2 µM. Conclusion and Implications IC261 inhibits sodium channels at a similar concentration necessary to reduce CK1δ/ε activity by 50% (IC50 value 1 µM). Thus, inhibition of sodium channels might contribute to the antitumor activity of IC261.


Assuntos
Caseína Quinase I/antagonistas & inibidores , Indóis/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.5/fisiologia , Floroglucinol/análogos & derivados , Bloqueadores dos Canais de Sódio/farmacologia , Linhagem Celular , Humanos , Floroglucinol/farmacologia
12.
Ann Neurol ; 77(1): 15-32, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25363075

RESUMO

OBJECTIVE: Aggregation of α-synuclein (α-syn) and α-syn cytotoxicity are hallmarks of sporadic and familial Parkinson disease (PD), with accumulating evidence that prefibrillar oligomers and protofibrils are the pathogenic species in PD and related synucleinopathies. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a key regulator of mitochondrial biogenesis and cellular energy metabolism, has recently been associated with the pathophysiology of PD. Despite extensive effort on studying the function of PGC-1α in mitochondria, no studies have addressed whether PGC-1α directly influences oligomerization of α-syn or whether α-syn oligomers impact PGC-1α expression. MATERIALS AND METHODS: We tested whether pharmacological or genetic activation of PGC-1α or PGC-11α knockdown could modulate the oligomerization of α-syn in vitro by using an α-syn -fragment complementation assay. RESULTS: In this study, we found that both PGC-1α reference gene (RG-PGC-1α) and the central nervous system (CNS)-specific PGC-1α (CNS-PGC-1α) are downregulated in human PD brain, in A30P α-syn transgenic animals, and in a cell culture model for α-syn oligomerization. Importantly, downregulation of both RG-PGC-1α and CNS-PGC-1α in cell culture or neurons from RG-PGC-1α-deficient mice leads to a strong induction of α-syn oligomerization and toxicity. In contrast, pharmacological activation or genetic overexpression of RG-PGC-1α reduced α-syn oligomerization and rescued α-syn-mediated toxicity. INTERPRETATION: Based on our results, we propose that PGC-1α downregulation and α-syn oligomerization form a vicious circle, thereby influencing and/or potentiating each other. Our data indicate that restoration of PGC-1α is a promising approach for development of effective drugs for the treatment of PD and related synucleinopathies.


Assuntos
Regulação da Expressão Gênica/genética , PPAR gama/genética , PPAR gama/metabolismo , Substância Negra/metabolismo , Fatores de Transcrição/metabolismo , alfa-Sinucleína/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Células Cultivadas , Córtex Cerebral/citologia , Modelos Animais de Doenças , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glioma/patologia , Humanos , Macrolídeos/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Neurônios/metabolismo , Doença de Parkinson/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Resveratrol , Estilbenos/farmacologia , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Fatores de Transcrição/genética , alfa-Sinucleína/genética
13.
Brain ; 137(Pt 8): 2287-302, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24934288

RESUMO

Dopamine midbrain neurons within the substantia nigra are particularly prone to degeneration in Parkinson's disease. Their selective loss causes the major motor symptoms of Parkinson's disease, but the causes for the high vulnerability of SN DA neurons, compared to neighbouring, more resistant ventral tegmental area dopamine neurons, are still unclear. Consequently, there is still no cure available for Parkinson's disease. Current therapies compensate the progressive loss of dopamine by administering its precursor l-DOPA and/or dopamine D2-receptor agonists. D2-autoreceptors and Cav1.3-containing L-type Ca(2+) channels both contribute to Parkinson's disease pathology. L-type Ca(2+) channel blockers protect SN DA neurons from degeneration in Parkinson's disease and its mouse models, and they are in clinical trials for neuroprotective Parkinson's disease therapy. However, their physiological functions in SN DA neurons remain unclear. D2-autoreceptors tune firing rates and dopamine release of SN DA neurons in a negative feedback loop through activation of G-protein coupled potassium channels (GIRK2, or KCNJ6). Mature SN DA neurons display prominent, non-desensitizing somatodendritic D2-autoreceptor responses that show pronounced desensitization in PARK-gene Parkinson's disease mouse models. We analysed surviving human SN DA neurons from patients with Parkinson's disease and from controls, and detected elevated messenger RNA levels of D2-autoreceptors and GIRK2 in Parkinson's disease. By electrophysiological analysis of postnatal juvenile and adult mouse SN DA neurons in in vitro brain-slices, we observed that D2-autoreceptor desensitization is reduced with postnatal maturation. Furthermore, a transient high-dopamine state in vivo, caused by one injection of either l-DOPA or cocaine, induced adult-like, non-desensitizing D2-autoreceptor responses, selectively in juvenile SN DA neurons, but not ventral tegmental area dopamine neurons. With pharmacological and genetic tools, we identified that the expression of this sensitized D2-autoreceptor phenotype required Cav1.3 L-type Ca(2+) channel activity, internal Ca(2+), and the interaction of the neuronal calcium sensor NCS-1 with D2-autoreceptors. Thus, we identified a first physiological function of Cav1.3 L-type Ca(2+) channels in SN DA neurons for homeostatic modulation of their D2-autoreceptor responses. L-type Ca(2+) channel activity however, was not important for pacemaker activity of mouse SN DA neurons. Furthermore, we detected elevated substantia nigra dopamine messenger RNA levels of NCS-1 (but not Cav1.2 or Cav1.3) after cocaine in mice, as well as in remaining human SN DA neurons in Parkinson's disease. Thus, our findings provide a novel homeostatic functional link in SN DA neurons between Cav1.3- L-type-Ca(2+) channels and D2-autoreceptor activity, controlled by NCS-1, and indicate that this adaptive signalling network (Cav1.3/NCS-1/D2/GIRK2) is also active in human SN DA neurons, and contributes to Parkinson's disease pathology. As it is accessible to pharmacological modulation, it provides a novel promising target for tuning substantia nigra dopamine neuron activity, and their vulnerability to degeneration.


Assuntos
Autorreceptores/metabolismo , Canais de Cálcio Tipo L/fisiologia , Neurônios Dopaminérgicos/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Proteínas Sensoras de Cálcio Neuronal/fisiologia , Neuropeptídeos/fisiologia , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Área Tegmentar Ventral/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Receptores de Dopamina D2/metabolismo , Substância Negra/citologia , Substância Negra/patologia , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/patologia
14.
FASEB J ; 26(2): 513-22, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22002906

RESUMO

Inward rectifier potassium channels of the Kir2 subfamily are important determinants of the electrical activity of brain and muscle cells. Genetic mutations in Kir2.1 associate with Andersen-Tawil syndrome (ATS), a familial disorder leading to stress-triggered periodic paralysis and ventricular arrhythmia. To identify the molecular mechanisms of this stress trigger, we analyze Kir channel function and localization electrophysiologically and by time-resolved confocal microscopy. Furthermore, we employ a mathematical model of muscular membrane potential. We identify a novel corticoid signaling pathway that, when activated by glucocorticoids, leads to enrichment of Kir2 channels in the plasma membranes of mammalian cell lines and isolated cardiac and skeletal muscle cells. We further demonstrate that activation of this pathway can either partly restore (40% of cases) or further impair (20% of cases) the function of mutant ATS channels, depending on the particular Kir2.1 mutation. This means that glucocorticoid treatment might either alleviate or deteriorate symptoms of ATS depending on the patient's individual Kir2.1 genotype. Thus, our findings provide a possible explanation for the contradictory effects of glucocorticoid treatment on symptoms in patients with ATS and may open new pathways for the design of personalized medicines in ATS therapy.


Assuntos
Síndrome de Andersen/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Síndrome de Andersen/tratamento farmacológico , Síndrome de Andersen/genética , Animais , Feminino , Glucocorticoides/uso terapêutico , Cobaias , Células HEK293 , Células HeLa , Humanos , Proteínas Imediatamente Precoces/metabolismo , Técnicas In Vitro , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Miócitos Cardíacos/metabolismo , Oócitos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Estresse Fisiológico , Xenopus laevis
15.
Commun Biol ; 6(1): 1146, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950046

RESUMO

Here we present a deep learning-based image analysis platform (DLAP), tailored to autonomously quantify cell numbers, and fluorescence signals within cellular compartments, derived from RNAscope or immunohistochemistry. We utilised DLAP to analyse subtypes of tyrosine hydroxylase (TH)-positive dopaminergic midbrain neurons in mouse and human brain-sections. These neurons modulate complex behaviour, and are differentially affected in Parkinson's and other diseases. DLAP allows the analysis of large cell numbers, and facilitates the identification of small cellular subpopulations. Using DLAP, we identified a small subpopulation of TH-positive neurons (~5%), mainly located in the very lateral Substantia nigra (SN), that was immunofluorescence-negative for the plasmalemmal dopamine transporter (DAT), with ~40% smaller cell bodies. These neurons were negative for aldehyde dehydrogenase 1A1, with a lower co-expression rate for dopamine-D2-autoreceptors, but a ~7-fold higher likelihood of calbindin-d28k co-expression (~70%). These results have important implications, as DAT is crucial for dopamine signalling, and is commonly used as a marker for dopaminergic SN neurons.


Assuntos
Aprendizado Profundo , Proteínas da Membrana Plasmática de Transporte de Dopamina , Animais , Humanos , Camundongos , Dopamina , Neurônios Dopaminérgicos , Substância Negra
16.
Proc Natl Acad Sci U S A ; 106(10): 4036-41, 2009 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-19225109

RESUMO

Normal resting potential (P1) of myofibers follows the Nernst equation, exhibiting about -85 mV at a normal extracellular K(+) concentration ([K(+)](o)) of 4 mM. Hyperpolarization occurs with decreased [K(+)](o), although at [K(+)](o) < 1.0 mM, myofibers paradoxically depolarize to a second stable potential of -60 mV (P2). In rat myofiber bundles, P2 also was found at more physiological [K(+)](o) and was associated with inexcitability. To increase the relative frequency of P2 to 50%, [K(+)](o) needed to be lowered to 1.5 mM. In the presence of the ionophore gramicidin, [K(+)](o) reduction to only 2.5 mM yielded the same effect. Acetazolamide normalized this increased frequency of P2 fibers. The findings mimic hypokalemic periodic paralysis (HypoPP), a channelopathy characterized by hypokalemia-induced weakness. Of myofibers from 7 HypoPP patients, up to 25% were in P2 at a [K(+)](o) of 4 mM, in accordance with their permanent weakness, and up to 99% were in P2 at a [K(+)](o) of 1.5 mM, in accordance with their paralytic attacks. Of 36 HypoPP patients, 25 had permanent weakness and myoplasmic intracellular Na(+) ([Na(+)](i)) overload (up to 24 mM) as shown by in vivo (23)Na-MRI. Acetazolamide normalized [Na(+)](i) and increased muscle strength. HypoPP myofibers showed a nonselective cation leak of 12-19.5 microS/cm(2), which may explain the Na(+) overload. The leak sensitizes myofibers to reduced serum K(+), and the resulting membrane depolarization causes the weakness. We postulate that the principle of paradoxical depolarization and loss of function upon [K(+)](o) reduction may apply to other tissues, such as heart or brain, when they become leaky (e.g., because of ischemia).


Assuntos
Canais Iônicos/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Debilidade Muscular/fisiopatologia , Potássio/farmacologia , Sódio/metabolismo , Adulto , Idoso de 80 Anos ou mais , Animais , Cátions , DNA Complementar/genética , Feminino , Humanos , Paralisia Periódica Hipopotassêmica/fisiopatologia , Técnicas In Vitro , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
17.
Front Pharmacol ; 13: 810611, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222028

RESUMO

The binary C2 toxin of Clostridium (C.) botulinum consists of two non-linked proteins, the enzyme subunit C2I and the separate binding/transport subunit C2II. To exhibit toxic effects on mammalian cells, proteolytically activated C2II (C2IIa) forms barrel-shaped heptamers that bind to carbohydrate receptors which are present on all mammalian cell types. C2I binds to C2IIa and the toxin complexes are internalized via receptor-mediated endocytosis. In acidified endosomal vesicles, C2IIa heptamers change their conformation and insert as pores into endosomal membranes. These pores serve as translocation-channels for the subsequent transport of C2I from the endosomal lumen into the cytosol. There, C2I mono-ADP-ribosylates G-actin, which results in depolymerization of F-actin and cell rounding. Noteworthy, so far morphological changes in cells were only observed after incubation with the complete C2 toxin, i.e., C2IIa plus C2I, but not with the single subunits. Unexpectedly, we observed that the non-catalytic transport subunit C2IIa (but not C2II) alone induced morphological changes and actin alterations in primary human polymorphonuclear leukocytes (PMNs, alias neutrophils) from healthy donors ex vivo, but not macrophages, epithelial and endothelial cells, as detected by phase contrast microscopy and fluorescent microscopy of the actin cytoskeleton. This suggests a PMN selective mode of action for C2IIa. The cytotoxicity of C2IIa on PMNs was prevented by C2IIa pore blockers and treatment with C2IIa (but not C2II) rapidly induced Ca2+ influx in PMNs, suggesting that pore-formation by C2IIa in cell membranes of PMNs is crucial for this effect. In addition, incubation of primary human PMNs with C2IIa decreased their chemotaxis ex vivo through porous culture inserts and in co-culture with human endothelial cells which is closer to the physiological extravasation process. In conclusion, the results suggest that C2IIa is a PMN-selective inhibitor of chemotaxis. This provides new knowledge for a pathophysiological role of C2 toxin as a modulator of innate immune cells and makes C2IIa an attractive candidate for the development of novel pharmacological strategies to selectively down-modulate the excessive and detrimental PMN recruitment into organs after traumatic injuries.

18.
Cells ; 11(20)2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36291163

RESUMO

The cellular and fluid phase-innate immune responses of many diseases predominantly involve activated neutrophil granulocytes and complement factors. However, a comparative systematic analysis of the early impact of key soluble complement cleavage products, including anaphylatoxins, on neutrophil granulocyte function is lacking. Neutrophil activity was monitored by flow cytometry regarding cellular (electro-)physiology, cellular activity, and changes in the surface expression of activation markers. The study revealed no major effects induced by C3a or C4a on neutrophil functions. By contrast, exposure to C5a or C5a des-Arg stimulated neutrophil activity as reflected in changes in membrane potential, intracellular pH, glucose uptake, and cellular size. Similarly, C5a and C5a des-Arg but no other monitored complement cleavage product enhanced phagocytosis and reactive oxygen species generation. C5a and C5a des-Arg also altered the neutrophil surface expression of several complement receptors and neutrophil activation markers, including C5aR1, CD62L, CD10, and CD11b, among others. In addition, a detailed characterization of the C5a-induced effects was performed with a time resolution of seconds. The multiparametric response of neutrophils was further analyzed by a principal component analysis, revealing CD11b, CD10, and CD16 to be key surrogates of the C5a-induced effects. Overall, we provide a comprehensive insight into the very early interactions of neutrophil granulocytes with activated complement split products and the resulting neutrophil activity. The results provide a basis for a better and, importantly, time-resolved and multiparametric understanding of neutrophil-related (patho-)physiologies.


Assuntos
Anafilatoxinas , Neutrófilos , Complemento C5a des-Arginina , Espécies Reativas de Oxigênio , Anafilatoxinas/análise , Anafilatoxinas/farmacologia , Proteínas do Sistema Complemento , Glucose
19.
J Clin Invest ; 118(6): 2157-68, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18451999

RESUMO

Paroxysmal dyskinesias are episodic movement disorders that can be inherited or are sporadic in nature. The pathophysiology underlying these disorders remains largely unknown but may involve disrupted ion homeostasis due to defects in cell-surface channels or nutrient transporters. In this study, we describe a family with paroxysmal exertion-induced dyskinesia (PED) over 3 generations. Their PED was accompanied by epilepsy, mild developmental delay, reduced CSF glucose levels, hemolytic anemia with echinocytosis, and altered erythrocyte ion concentrations. Using a candidate gene approach, we identified a causative deletion of 4 highly conserved amino acids (Q282_S285del) in the pore region of the glucose transporter 1 (GLUT1). Functional studies in Xenopus oocytes and human erythrocytes revealed that this mutation decreased glucose transport and caused a cation leak that alters intracellular concentrations of sodium, potassium, and calcium. We screened 4 additional families, in which PED is combined with epilepsy, developmental delay, or migraine, but not with hemolysis or echinocytosis, and identified 2 additional GLUT1 mutations (A275T, G314S) that decreased glucose transport but did not affect cation permeability. Combining these data with brain imaging studies, we propose that the dyskinesias result from an exertion-induced energy deficit that may cause episodic dysfunction of the basal ganglia, and that the hemolysis with echinocytosis may result from alterations in intracellular electrolytes caused by a cation leak through mutant GLUT1.


Assuntos
Anemia Hemolítica/etiologia , Anemia Hemolítica/genética , Cátions , Coreia/genética , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/fisiologia , Glucose/metabolismo , Adulto , Sequência de Aminoácidos , Animais , Coreia/patologia , Eritrócitos/metabolismo , Feminino , Humanos , Masculino , Modelos Biológicos , Dados de Sequência Molecular , Esforço Físico , Xenopus
20.
Front Pharmacol ; 12: 622489, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732157

RESUMO

Atomoxetine, a neuroactive drug, is approved for the treatment of attention-deficit/hyperactivity disorder (ADHD). It is primarily known as a high affinity blocker of the noradrenaline transporter, whereby its application leads to an increased level of the corresponding neurotransmitter in different brain regions. However, the concentrations used to obtain clinical effects are much higher than those which are required to block the transporter system. Thus, off-target effects are likely to occur. In this way, we previously identified atomoxetine as blocker of NMDA receptors. As many psychotropic drugs give rise to sudden death of cardiac origin, we now tested the hypothesis whether atomoxetine also interacts with voltage-gated sodium channels of heart muscle type in clinically relevant concentrations. Electrophysiological experiments were performed by means of the patch-clamp technique at human heart muscle sodium channels (hNav1.5) heterogeneously expressed in human embryonic kidney cells. Atomoxetine inhibited sodium channels in a state- and use-dependent manner. Atomoxetine had only a weak affinity for the resting state of the hNav1.5 (Kr: ∼ 120 µM). The efficacy of atomoxetine strongly increased with membrane depolarization, indicating that the inactivated state is an important target. A hallmark of this drug was its slow interaction. By use of different experimental settings, we concluded that the interaction occurs with the slow inactivated state as well as by slow kinetics with the fast-inactivated state. Half-maximal effective concentrations (2-3 µM) were well within the concentration range found in plasma of treated patients. Atomoxetine also interacted with the open channel. However, the interaction was not fast enough to accelerate the time constant of fast inactivation. Nevertheless, when using the inactivation-deficient hNav1.5_I408W_L409C_A410W mutant, we found that the persistent late current was blocked half maximal at about 3 µM atomoxetine. The interaction most probably occurred via the local anesthetic binding site. Atomoxetine inhibited sodium channels at a similar concentration as it is used for the treatment of ADHD. Due to its slow interaction and by inhibiting the late current, it potentially exerts antiarrhythmic properties.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa