Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nature ; 627(8004): 671-679, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448585

RESUMO

DNA and histone modifications combine into characteristic patterns that demarcate functional regions of the genome1,2. While many 'readers' of individual modifications have been described3-5, how chromatin states comprising composite modification signatures, histone variants and internucleosomal linker DNA are interpreted is a major open question. Here we use a multidimensional proteomics strategy to systematically examine the interaction of around 2,000 nuclear proteins with over 80 modified dinucleosomes representing promoter, enhancer and heterochromatin states. By deconvoluting complex nucleosome-binding profiles into networks of co-regulated proteins and distinct nucleosomal features driving protein recruitment or exclusion, we show comprehensively how chromatin states are decoded by chromatin readers. We find highly distinctive binding responses to different features, many factors that recognize multiple features, and that nucleosomal modifications and linker DNA operate largely independently in regulating protein binding to chromatin. Our online resource, the Modification Atlas of Regulation by Chromatin States (MARCS), provides in-depth analysis tools to engage with our results and advance the discovery of fundamental principles of genome regulation by chromatin states.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina , Proteínas Nucleares , Nucleossomos , Proteômica , Humanos , Sítios de Ligação , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , DNA/genética , DNA/metabolismo , Elementos Facilitadores Genéticos , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/metabolismo , Proteínas Nucleares/análise , Proteínas Nucleares/metabolismo , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteômica/métodos
2.
Mol Cell ; 81(13): 2808-2822.e10, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34111399

RESUMO

The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway senses cytosolic DNA and induces interferon-stimulated genes (ISGs) to activate the innate immune system. Here, we report the unexpected discovery that cGAS also senses dysfunctional protein production. Purified ribosomes interact directly with cGAS and stimulate its DNA-dependent activity in vitro. Disruption of the ribosome-associated protein quality control (RQC) pathway, which detects and resolves ribosome collision during translation, results in cGAS-dependent ISG expression and causes re-localization of cGAS from the nucleus to the cytosol. Indeed, cGAS preferentially binds collided ribosomes in vitro, and orthogonal perturbations that result in elevated levels of collided ribosomes and RQC activation cause sub-cellular re-localization of cGAS and ribosome binding in vivo as well. Thus, translation stress potently increases DNA-dependent cGAS activation. These findings have implications for the inflammatory response to viral infection and tumorigenesis, both of which substantially reprogram cellular protein synthesis.


Assuntos
Núcleo Celular , Nucleotidiltransferases , Biossíntese de Proteínas , Ribossomos , Transdução de Sinais , Estresse Fisiológico , Transporte Ativo do Núcleo Celular , Núcleo Celular/química , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Ribossomos/química , Ribossomos/genética , Ribossomos/metabolismo
3.
Mol Cell ; 81(14): 2944-2959.e10, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34166609

RESUMO

A number of regulatory factors are recruited to chromatin by specialized RNAs. Whether RNA has a more general role in regulating the interaction of proteins with chromatin has not been determined. We used proteomics methods to measure the global impact of nascent RNA on chromatin in embryonic stem cells. Surprisingly, we found that nascent RNA primarily antagonized the interaction of chromatin modifiers and transcriptional regulators with chromatin. Transcriptional inhibition and RNA degradation induced recruitment of a set of transcriptional regulators, chromatin modifiers, nucleosome remodelers, and regulators of higher-order structure. RNA directly bound to factors, including BAF, NuRD, EHMT1, and INO80 and inhibited their interaction with nucleosomes. The transcriptional elongation factor P-TEFb directly bound pre-mRNA, and its recruitment to chromatin upon Pol II inhibition was regulated by the 7SK ribonucleoprotein complex. We postulate that by antagonizing the interaction of regulatory proteins with chromatin, nascent RNA links transcriptional output with chromatin composition.


Assuntos
Cromatina/metabolismo , RNA/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Masculino , Camundongos , Nucleossomos/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , Ligação Proteica/fisiologia , Proteômica/métodos , RNA Polimerase II/metabolismo , Transcrição Gênica/fisiologia , Fatores de Elongação da Transcrição/metabolismo
4.
Mol Cell ; 79(2): 332-341.e7, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32521225

RESUMO

The Ddi1/DDI2 proteins are ubiquitin shuttling factors, implicated in a variety of cellular functions. In addition to ubiquitin-binding and ubiquitin-like domains, they contain a conserved region with similarity to retroviral proteases, but whether and how DDI2 functions as a protease has remained unknown. Here, we show that DDI2 knockout cells are sensitive to proteasome inhibition and accumulate high-molecular weight, ubiquitylated proteins that are poorly degraded by the proteasome. These proteins are targets for the protease activity of purified DDI2. No evidence for DDI2 acting as a de-ubiquitylating enzyme was uncovered, which could suggest that it cleaves the ubiquitylated protein itself. In support of this idea, cleavage of transcription factor NRF1 is known to require DDI2 activity in vivo. We show that DDI2 is indeed capable of cleaving NRF1 in vitro but only when NRF1 protein is highly poly-ubiquitylated. Together, these data suggest that DDI2 is a ubiquitin-directed endoprotease.


Assuntos
Ácido Aspártico Proteases/metabolismo , Fator 1 Nuclear Respiratório/metabolismo , Ubiquitina/metabolismo , Ácido Aspártico Proteases/genética , Sítios de Ligação , Sistemas CRISPR-Cas , Linhagem Celular , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Biossíntese de Proteínas , Proteólise
5.
J Cell Sci ; 137(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38294121

RESUMO

ATG9A, a transmembrane protein of the core autophagy pathway, cycles between the Golgi, endosomes and a vesicular compartment. ATG9A was recently shown to act as a lipid scramblase, and this function is thought to require its interaction with another core autophagy protein, ATG2A, which acts as a lipid transfer protein. Together, ATG9A and ATG2A are proposed to function to expand the growing autophagosome. However, ATG9A is implicated in other pathways including membrane repair and lipid droplet homeostasis. To elucidate other ATG9A interactors within the autophagy pathway, or interactors beyond autophagy, we performed an interactome analysis through mass spectrometry. This analysis revealed a host of proteins involved in lipid synthesis and trafficking, including ACSL3, VPS13A and VPS13C. Furthermore, we show that ATG9A directly interacts with VPS13A and forms a complex that is distinct from the ATG9A-ATG2A complex.


Assuntos
Proteínas de Membrana , Proteínas de Transporte Vesicular , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Membrana/metabolismo , Autofagossomos/metabolismo , Autofagia , Lipídeos , Proteínas Relacionadas à Autofagia/metabolismo
7.
EMBO J ; 36(1): 79-101, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27852625

RESUMO

Cells are constantly threatened by multiple sources of genotoxic stress that cause DNA damage. To maintain genome integrity, cells have developed a coordinated signalling network called DNA damage response (DDR). While multiple kinases have been thoroughly studied during DDR activation, the role of protein dephosphorylation in the damage response remains elusive. Here, we show that the phosphatase Cdc14 is essential to fulfil recombinational DNA repair in budding yeast. After DNA double-strand break (DSB) generation, Cdc14 is transiently released from the nucleolus and activated. In this state, Cdc14 targets the spindle pole body (SPB) component Spc110 to counterbalance its phosphorylation by cyclin-dependent kinase (Cdk). Alterations in the Cdk/Cdc14-dependent phosphorylation status of Spc110, or its inactivation during the induction of a DNA lesion, generate abnormal oscillatory SPB movements that disrupt DSB-SPB interactions. Remarkably, these defects impair DNA repair by homologous recombination indicating that SPB integrity is essential during the repair process. Together, these results show that Cdc14 promotes spindle stability and DSB-SPB tethering during DNA repair, and imply that metaphase spindle maintenance is a critical feature of the repair process.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Metáfase , Proteínas Tirosina Fosfatases/metabolismo , Reparo de DNA por Recombinação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Proteínas de Ligação a Calmodulina , Quinases Ciclina-Dependentes/metabolismo , Proteínas do Citoesqueleto/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas Nucleares/metabolismo
8.
J Immunol ; 194(10): 4705-4716, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25840911

RESUMO

Epoxygenases belong to the cytochrome P450 family. They generate epoxyeicosatrienoic acids, which are known to have anti-inflammatory effects, but little is known about their role in macrophage function. By high-throughput sequencing of RNA in primary macrophages derived from rodents and humans, we establish the relative expression of epoxygenases in these cells. Zinc-finger nuclease-mediated targeted gene deletion of the major rat macrophage epoxygenase Cyp2j4 (ortholog of human CYP2J2) resulted in reduced epoxyeicosatrienoic acid synthesis. Cyp2j4(-/-) macrophages have relatively increased peroxisome proliferator-activated receptor-γ levels and show a profibrotic transcriptome, displaying overexpression of a specific subset of genes (260 transcripts) primarily involved in extracellular matrix, with fibronectin being the most abundantly expressed transcript. Fibronectin expression is under the control of epoxygenase activity in human and rat primary macrophages. In keeping with the in vitro findings, Cyp2j4(-/-) rats show upregulation of type I collagen following unilateral ureter obstruction of the kidney, and quantitative proteomics analysis (liquid chromatography-tandem mass spectrometry) showed increased renal type I collagen and fibronectin protein abundance resulting from experimentally induced crescentic glomerulonephritis in these rats. Taken together, these results identify the rat epoxygenase Cyp2j4 as a determinant of a profibrotic macrophage transcriptome that could have implications in various inflammatory conditions, depending on macrophage function.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Fibrose/enzimologia , Fibrose/genética , Macrófagos/enzimologia , Animais , Western Blotting , Cromatografia Líquida , Citocromo P-450 CYP2J2 , Família 2 do Citocromo P450 , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Técnicas de Inativação de Genes , Glomerulonefrite/enzimologia , Glomerulonefrite/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Interferência de RNA , Ratos , Ratos Endogâmicos WKY , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas em Tandem , Transcriptoma
9.
Mol Cell Proteomics ; 14(3): 484-98, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25532521

RESUMO

Macrophage multinucleation (MM) is essential for various biological processes such as osteoclast-mediated bone resorption and multinucleated giant cell-associated inflammatory reactions. Here we study the molecular pathways underlying multinucleation in the rat through an integrative approach combining MS-based quantitative phosphoproteomics (LC-MS/MS) and transcriptome (high-throughput RNA-sequencing) to identify new regulators of MM. We show that a strong metabolic shift toward HIF1-mediated glycolysis occurs at transcriptomic level during MM, together with modifications in phosphorylation of over 50 proteins including several ARF GTPase activators and polyphosphate inositol phosphatases. We use shortest-path analysis to link differential phosphorylation with the transcriptomic reprogramming of macrophages and identify LRRFIP1, SMARCA4, and DNMT1 as novel regulators of MM. We experimentally validate these predictions by showing that knock-down of these latter reduce macrophage multinucleation. These results provide a new framework for the combined analysis of transcriptional and post-translational changes during macrophage multinucleation, prioritizing essential genes, and revealing the sequential events leading to the multinucleation of macrophages.


Assuntos
Núcleo Celular/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Helicases/metabolismo , Perfilação da Expressão Gênica/métodos , Macrófagos/metabolismo , Proteínas Nucleares/metabolismo , Proteoma/análise , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , DNA Helicases/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas Nucleares/genética , Fosforilação , Proteínas de Ligação a RNA/genética , Ratos , Ratos Endogâmicos Lew , Ratos Endogâmicos WKY , Análise de Sequência de RNA/métodos , Fatores de Transcrição/genética
10.
J Am Soc Nephrol ; 26(12): 3045-59, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25855779

RESUMO

Nitric oxide (NO) production is diminished in many patients with cardiovascular and renal disease. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis, and elevated plasma levels of ADMA are associated with poor outcomes. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is a methylarginine-metabolizing enzyme that reduces ADMA levels. We reported previously that a DDAH1 gene variant associated with increased renal DDAH1 mRNA transcription and lower plasma ADMA levels, but counterintuitively, a steeper rate of renal function decline. Here, we test the hypothesis that reduced renal-specific ADMA metabolism protects against progressive renal damage. Renal DDAH1 is expressed predominately within the proximal tubule. A novel proximal tubule-specific Ddah1 knockout (Ddah1(PT-/-)) mouse demonstrated tubular cell accumulation of ADMA and lower NO concentrations, but unaltered plasma ADMA concentrations. Ddah1(PT-/-) mice were protected from reduced kidney tissue mass, collagen deposition, and profibrotic cytokine expression in two independent renal injury models: folate nephropathy and unilateral ureteric obstruction. Furthermore, a study of two independent kidney transplant cohorts revealed higher levels of human renal allograft methylarginine-metabolizing enzyme gene expression associated with steeper function decline. We also report an association among DDAH1 expression, NO activity, and uromodulin expression supported by data from both animal and human studies, raising the possibility that kidney DDAH1 expression exacerbates renal injury through uromodulin-related mechanisms. Together, these data demonstrate that reduced renal tubular ADMA metabolism protects against progressive kidney function decline. Thus, circulating ADMA may be an imprecise marker of renal methylarginine metabolism, and therapeutic ADMA reduction may even be deleterious to kidney function.


Assuntos
Injúria Renal Aguda/metabolismo , Amidoidrolases/metabolismo , Arginina/análogos & derivados , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Adulto , Aloenxertos/metabolismo , Amidoidrolases/genética , Animais , Arginina/metabolismo , Colágeno Tipo I/urina , Cadeia alfa 1 do Colágeno Tipo I , Feminino , Ácido Fólico/efeitos adversos , Expressão Gênica , Taxa de Filtração Glomerular , Humanos , Transplante de Rim , Túbulos Renais Proximais/enzimologia , Túbulos Renais Proximais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , RNA Mensageiro/metabolismo , Transaminases/genética , Transaminases/metabolismo , Obstrução Ureteral/complicações , Uromodulina/urina
11.
iScience ; 27(2): 108820, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38303729

RESUMO

ISG15 is a type I interferon-induced ubiquitin-like modifier that functions in innate immune responses. The major human ISG15 ligase is hHERC5, a ribosome-associated HECT E3 that broadly ISGylates proteins cotranslationally. Here, we characterized the hHERC5-dependent ISGylome and identified over 2,000 modified lysines in over 1,100 proteins in IFN-ß-stimulated cells. In parallel, we compared the substrate selectivity hHERC5 to the major mouse ISG15 ligase, mHERC6, and analysis of sequences surrounding ISGylation sites revealed that hHERC5 and mHERC6 have distinct preferences for amino acid sequence context. Several features of the datasets were consistent with ISGylation of ribosome-tethered nascent chains, and mHERC6, like hHERC5, cotranslationally modified nascent polypeptides. The ISGylome datasets presented here represent the largest numbers of protein targets and modification sites attributable to a single Ub/Ubl ligase and the lysine selectivities of the hHERC5 and mHERC6 enzymes may have implications for the activities of HECT domain ligases, generally.

12.
Cell Rep ; 42(12): 113506, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38019655

RESUMO

Cross-presentation of dead cell-associated antigens by conventional dendritic cells type 1 (cDC1s) is critical for CD8+ T cells response against many tumors and viral infections. It is facilitated by DNGR-1 (CLEC9A), an SYK-coupled cDC1 receptor that detects dead cell debris. Here, we report that DNGR-1 engagement leads to rapid activation of CBL and CBL-B E3 ligases to cause K63-linked ubiquitination of SYK and terminate signaling. Genetic deletion of CBL E3 ligases or charge-conserved mutation of target lysines within SYK abolishes SYK ubiquitination and results in enhanced DNGR-1-dependent antigen cross-presentation. We also find that cDC1 deficient in CBL E3 ligases are more efficient at cross-priming CD8+ T cells to dead cell-associated antigens and promoting host resistance to tumors. Our findings reveal a role for CBL-dependent ubiquitination in limiting cross-presentation of dead cell-associated antigens and highlight an axis of negative regulation of cDC1 activity that could be exploited to increase anti-tumor immunity.


Assuntos
Apresentação Cruzada , Ubiquitina-Proteína Ligases , Linfócitos T CD8-Positivos , Proteínas Proto-Oncogênicas c-cbl , Ubiquitinação , Células Dendríticas , Quinase Syk
13.
Acta Biomater ; 149: 179-188, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35779773

RESUMO

Successfully replacing damaged cartilage with tissue-engineered constructs requires integration with the host tissue and could benefit from leveraging the native tissue's intrinsic healing capacity; however, efforts are limited by a poor understanding of how cartilage repairs minor defects. Here, we investigated the conditions that foster natural cartilage tissue repair to identify strategies that might be exploited to enhance the integration of engineered/grafted cartilage with host tissue. We damaged porcine articular cartilage explants and using a combination of pulsed SILAC-based proteomics, ultrastructural imaging, and catabolic enzyme blocking strategies reveal that integration of damaged cartilage surfaces is not driven by neo-matrix synthesis, but rather local depletion of proteoglycans. ADAMTS4 expression and activity are upregulated in injured cartilage explants, but integration could be reduced by inhibiting metalloproteinase activity with TIMP3. These observations suggest that catabolic enzyme-mediated proteoglycan depletion likely allows existing collagen fibrils to undergo cross-linking, fibrillogenesis, or entanglement, driving integration. Catabolic enzymes are often considered pathophysiological markers of osteoarthritis. Our findings suggest that damage-induced upregulation of metalloproteinase activity may be a part of a healing response that tips towards tissue destruction under pathological conditions and in osteoarthritis, but could also be harnessed in tissue engineering strategies to mediate repair. STATEMENT OF SIGNIFICANCE: Cartilage tissue engineering strategies require graft integration with the surrounding tissue; however, how the native tissue repairs minor injuries is poorly understood. We applied pulsed SILAC-based proteomics, ultrastructural imaging, and catabolic enzyme blocking strategies to a porcine cartilage explant model and found that integration of damaged cartilage surfaces is driven by catabolic enzyme-mediated local depletion of proteoglycans. Although catabolic enzymes have been implicated in cartilage destruction in osteoarthritis, our findings suggest that damage-induced upregulation of metalloproteinase activity may be a part of a healing response that tips towards tissue destruction under pathological conditions. They also suggest that this natural cartilage tissue repair process could be harnessed in tissue engineering strategies to enhance the integration of engineered cartilage with host tissue.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Metaloproteases/metabolismo , Osteoartrite/patologia , Proteoglicanas/metabolismo , Suínos , Engenharia Tecidual
14.
Nat Cancer ; 3(2): 173-187, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35221334

RESUMO

Radiotherapy is one of the most effective approaches to achieve tumor control in cancer patients, although healthy tissue injury due to off-target radiation exposure can occur. In this study, we used a model of acute radiation injury to the lung, in the context of cancer metastasis, to understand the biological link between tissue damage and cancer progression. We exposed healthy mouse lung tissue to radiation before the induction of metastasis and observed a strong enhancement of cancer cell growth. We found that locally activated neutrophils were key drivers of the tumor-supportive preconditioning of the lung microenvironment, governed by enhanced regenerative Notch signaling. Importantly, these tissue perturbations endowed arriving cancer cells with an augmented stemness phenotype. By preventing neutrophil-dependent Notch activation, via blocking degranulation, we were able to significantly offset the radiation-enhanced metastases. This work highlights a pro-tumorigenic activity of neutrophils, which is likely linked to their tissue regenerative functions.


Assuntos
Neoplasias Pulmonares , Exposição à Radiação , Animais , Humanos , Pulmão/patologia , Neoplasias Pulmonares/patologia , Camundongos , Ativação de Neutrófilo , Neutrófilos/patologia , Microambiente Tumoral
15.
Elife ; 112022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36422864

RESUMO

N6- methyladenosine (m6A) RNA modification impacts mRNA fate primarily via reader proteins, which dictate processes in development, stress, and disease. Yet little is known about m6A function in Saccharomyces cerevisiae, which occurs solely during early meiosis. Here, we perform a multifaceted analysis of the m6A reader protein Pho92/Mrb1. Cross-linking immunoprecipitation analysis reveals that Pho92 associates with the 3'end of meiotic mRNAs in both an m6A-dependent and independent manner. Within cells, Pho92 transitions from the nucleus to the cytoplasm, and associates with translating ribosomes. In the nucleus Pho92 associates with target loci through its interaction with transcriptional elongator Paf1C. Functionally, we show that Pho92 promotes and links protein synthesis to mRNA decay. As such, the Pho92-mediated m6A-mRNA decay is contingent on active translation and the CCR4-NOT complex. We propose that the m6A reader Pho92 is loaded co-transcriptionally to facilitate protein synthesis and subsequent decay of m6A modified transcripts, and thereby promotes meiosis.


Assuntos
Exercício Físico , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , RNA Mensageiro/genética , Estabilidade de RNA
16.
Curr Biol ; 32(21): 4719-4726.e4, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36137547

RESUMO

DNA double-strand breaks (DSBs) are deleterious lesions, which must be repaired precisely to maintain genomic stability. During meiosis, programmed DSBs are repaired via homologous recombination (HR) while repair using the nonhomologous end joining (NHEJ) pathway is inhibited, thereby ensuring crossover formation and accurate chromosome segregation.1,2 How DSB repair pathway choice is implemented during meiosis is unknown. In C. elegans, meiotic DSB repair takes place in the context of the fully formed, highly dynamic zipper-like structure present between homologous chromosomes called the synaptonemal complex (SC).3,4,5,6,7,8,9 The SC consists of a pair of lateral elements bridged by a central region composed of the SYP proteins in C. elegans. How the structural components of the SC are regulated to maintain the architectural integrity of the assembled SC around DSB repair sites remained unclear. Here, we show that SYP-4, a central region component of the SC, is phosphorylated at Serine 447 in a manner dependent on DSBs and the ATM/ATR DNA damage response kinases. We show that this SYP-4 phosphorylation is critical for preserving the SC structure following exogenous (γ-IR-induced) DSB formation and for promoting normal DSB repair progression and crossover patterning following SPO-11-dependent and exogenous DSBs. We propose a model in which ATM/ATR-dependent phosphorylation of SYP-4 at the S447 site plays important roles both in maintaining the architectural integrity of the SC following DSB formation and in warding off repair via the NHEJ repair pathway, thereby preventing aneuploidy.


Assuntos
Proteínas de Caenorhabditis elegans , Quebras de DNA de Cadeia Dupla , Animais , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Reparo do DNA , Meiose , DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
17.
mBio ; 12(2)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33688001

RESUMO

Malaria parasites cause disease through repeated cycles of intraerythrocytic proliferation. Within each cycle, several rounds of DNA replication produce multinucleated forms, called schizonts, that undergo segmentation to form daughter merozoites. Upon rupture of the infected cell, the merozoites egress to invade new erythrocytes and repeat the cycle. In human malarial infections, an antibody response specific for the Plasmodium falciparum protein PF3D7_1021800 was previously associated with protection against malaria, leading to an interest in PF3D7_1021800 as a candidate vaccine antigen. Antibodies to the protein were reported to inhibit egress, resulting in it being named schizont egress antigen-1 (SEA1). A separate study found that SEA1 undergoes phosphorylation in a manner dependent upon the parasite cGMP-dependent protein kinase PKG, which triggers egress. While these findings imply a role for SEA1 in merozoite egress, this protein has also been implicated in kinetochore function during schizont development. Therefore, the function of SEA1 remains unclear. Here, we show that P. falciparum SEA1 localizes in proximity to centromeres within dividing nuclei and that conditional disruption of SEA1 expression severely impacts the distribution of DNA and formation of merozoites during schizont development, with a proportion of SEA1-null merozoites completely lacking nuclei. SEA1-null schizonts rupture, albeit with low efficiency, suggesting that neither SEA1 function nor normal segmentation is a prerequisite for egress. We conclude that SEA1 does not play a direct mechanistic role in egress but instead acts upstream of egress as an essential regulator required to ensure the correct packaging of nuclei within merozoites.IMPORTANCE Malaria is a deadly infectious disease. Rationally designed novel therapeutics will be essential for its control and eradication. The Plasmodium falciparum protein PF3D7_1021800, annotated as SEA1, is under investigation as a prospective component of a malaria vaccine, based on previous indications that antibodies to SEA1 interfere with parasite egress from infected erythrocytes. However, a consensus on the function of SEA1 is lacking. Here, we demonstrate that SEA1 localizes to dividing parasite nuclei and is necessary for the correct segregation of replicated DNA into individual daughter merozoites. In the absence of SEA1, merozoites develop defectively, often completely lacking a nucleus, and, consequently, egress is impaired and/or aberrant. Our findings provide insights into the divergent mechanisms by which intraerythrocytic malaria parasites develop and divide. Our conclusions regarding the localization and function of SEA1 are not consistent with the hypothesis that antibodies against it confer protective immunity to malaria by blocking merozoite egress.


Assuntos
Antígenos de Protozoários/genética , Eritrócitos/parasitologia , Merozoítos/genética , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/genética , Esquizontes/fisiologia , Antígenos de Protozoários/metabolismo , Divisão Celular , Humanos , Merozoítos/química , Fosforilação , Plasmodium falciparum/química , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Estudos Prospectivos , Proteínas de Protozoários/metabolismo
18.
Elife ; 92020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31934863

RESUMO

Telomeres are a significant challenge to DNA replication and are prone to replication stress and telomere fragility. The shelterin component TRF1 facilitates telomere replication but the molecular mechanism remains uncertain. By interrogating the proteomic composition of telomeres, we show that mouse telomeres lacking TRF1 undergo protein composition reorganisation associated with the recruitment of DNA damage response and chromatin remodellers. Surprisingly, mTRF1 suppresses the accumulation of promyelocytic leukemia (PML) protein, BRCA1 and the SMC5/6 complex at telomeres, which is associated with increased Homologous Recombination (HR) and TERRA transcription. We uncovered a previously unappreciated role for mTRF1 in the suppression of telomere recombination, dependent on SMC5 and also POLD3 dependent Break Induced Replication at telomeres. We propose that TRF1 facilitates S-phase telomeric DNA synthesis to prevent illegitimate mitotic DNA recombination and chromatin rearrangement.


Assuntos
Montagem e Desmontagem da Cromatina , Quebras de DNA , Replicação do DNA/genética , Recombinação Genética/genética , Telômero/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Cromatina/metabolismo , DNA/biossíntese , DNA Polimerase III/metabolismo , Deleção de Genes , Humanos , Corpos de Inclusão/metabolismo , Camundongos , Mitose , Regulação para Cima/genética
19.
Nat Med ; 26(10): 1593-1601, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32895569

RESUMO

Intestinal failure, following extensive anatomical or functional loss of small intestine, has debilitating long-term consequences for children1. The priority of patient care is to increase the length of functional intestine, particularly the jejunum, to promote nutritional independence2. Here we construct autologous jejunal mucosal grafts using biomaterials from pediatric patients and show that patient-derived organoids can be expanded efficiently in vitro. In parallel, we generate decellularized human intestinal matrix with intact nanotopography, which forms biological scaffolds. Proteomic and Raman spectroscopy analyses reveal highly analogous biochemical profiles of human small intestine and colon scaffolds, indicating that they can be used interchangeably as platforms for intestinal engineering. Indeed, seeding of jejunal organoids onto either type of scaffold reliably reconstructs grafts that exhibit several aspects of physiological jejunal function and that survive to form luminal structures after transplantation into the kidney capsule or subcutaneous pockets of mice for up to 2 weeks. Our findings provide proof-of-concept data for engineering patient-specific jejunal grafts for children with intestinal failure, ultimately aiding in the restoration of nutritional autonomy.


Assuntos
Enteropatias/patologia , Mucosa Intestinal/transplante , Jejuno/transplante , Organoides/patologia , Medicina de Precisão/métodos , Cultura Primária de Células/métodos , Engenharia Tecidual/métodos , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Criança , Enterócitos/patologia , Enterócitos/fisiologia , Enterócitos/transplante , Matriz Extracelular/patologia , Feminino , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Enteropatias/congênito , Enteropatias/terapia , Mucosa Intestinal/citologia , Mucosa Intestinal/patologia , Jejuno/citologia , Jejuno/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Estudo de Prova de Conceito , Suínos , Alicerces Teciduais
20.
Science ; 369(6504)2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32764038

RESUMO

Sulfolobus acidocaldarius is the closest experimentally tractable archaeal relative of eukaryotes and, despite lacking obvious cyclin-dependent kinase and cyclin homologs, has an ordered eukaryote-like cell cycle with distinct phases of DNA replication and division. Here, in exploring the mechanism of cell division in S. acidocaldarius, we identify a role for the archaeal proteasome in regulating the transition from the end of one cell cycle to the beginning of the next. Further, we identify the archaeal ESCRT-III homolog, CdvB, as a key target of the proteasome and show that its degradation triggers division by allowing constriction of the CdvB1:CdvB2 ESCRT-III division ring. These findings offer a minimal mechanism for ESCRT-III-mediated membrane remodeling and point to a conserved role for the proteasome in eukaryotic and archaeal cell cycle control.


Assuntos
Proteínas Arqueais/fisiologia , Divisão Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/fisiologia , Complexo de Endopeptidases do Proteassoma/fisiologia , Sulfolobus acidocaldarius/citologia , Proteínas Arqueais/química , Bortezomib/química , Bortezomib/farmacologia , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/química , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Proteólise , Sulfolobus acidocaldarius/efeitos dos fármacos , Sulfolobus acidocaldarius/enzimologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa