Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
FASEB J ; 29(5): 1817-29, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25636740

RESUMO

The Smoothened (Smo) receptor, a member of class F G protein-coupled receptors, is the main transducer of the Hedgehog (Hh) signaling pathway implicated in a wide range of developmental and adult processes. Smo is the target of anticancer drugs that bind to a long and narrow cavity in the 7-transmembrane (7TM) domain. X-ray structures of human Smo (hSmo) bound to several ligands have revealed 2 types of 7TM-directed antagonists: those binding mostly to extracellular loops (site 1, e.g., LY2940680) and those penetrating deeply in the 7TM cavity (site 2, e.g., SANT-1). Here we report the development of the acylguanidine MRT-92, which displays subnanomolar antagonist activity against Smo in various Hh cell-based assays. MRT-92 inhibits rodent cerebellar granule cell proliferation induced by Hh pathway activation through pharmacologic (half maximal inhibitory concentration [IC50] = 0.4 nM) or genetic manipulation. Using [(3)H]MRT-92 (Kd = 0.3 nM for hSmo), we created a comprehensive framework for the interaction of small molecule modulators with hSmo and for understanding chemoresistance linked to hSmo mutations. Guided by molecular docking and site-directed mutagenesis data, our work convincingly confirms that MRT-92 simultaneously recognized and occupied both sites 1 and 2. Our data demonstrate the existence of a third type of Smo antagonists, those entirely filling the Smo binding cavity from the upper extracellular part to the lower cytoplasmic-proximal subpocket. Our studies should help design novel potent Smo antagonists and more effective therapeutic strategies for treating Hh-linked cancers and associated chemoresistance.


Assuntos
Antineoplásicos/farmacologia , Membrana Celular/metabolismo , Neoplasias Cerebelares/metabolismo , Guanidinas/farmacologia , Proteínas Hedgehog/antagonistas & inibidores , Meduloblastoma/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Adulto , Animais , Sítios de Ligação , Western Blotting , Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Hedgehog/metabolismo , Humanos , Técnicas Imunoenzimáticas , Meduloblastoma/tratamento farmacológico , Meduloblastoma/patologia , Camundongos , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , Ligação Proteica , Conformação Proteica , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor Smoothened
2.
Bioorg Med Chem ; 24(4): 554-69, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26752095

RESUMO

We report the first comprehensive structure-activity study of calindol (4, (R)-N-[(1H-indol-2-yl)methyl]-1-(1-naphthyl)ethanamine), a positive allosteric modulator, or calcimimetic, of the calcium sensing receptor (CaSR). While replacement of the naphthyl moiety of calindol by other aromatic groups (phenyl, biphenyl) was largely detrimental to calcimimetic activity, incorporation of substituents on the 4, 5 or 7 position of the indole portion of calindol was found to provide either equipotent derivatives compared to calindol (e.g., 4-phenyl, 4-hydroxy, 5-hydroxycalindol 44, 52, 53) or, in the case of 7-nitrocalindol (51), a 6-fold more active calcimimetic displaying an EC50 of 20nM. Unlike calindol, the more active CaSR calcimimetics were shown not to act as antagonists of the closely related GPRC6A receptor, suggesting a more selective profile for these new analogues.


Assuntos
Desenho de Fármacos , Indóis/farmacologia , Naftalenos/farmacologia , Receptores de Detecção de Cálcio/agonistas , Relação Dose-Resposta a Droga , Humanos , Indóis/síntese química , Indóis/química , Estrutura Molecular , Naftalenos/síntese química , Naftalenos/química , Relação Estrutura-Atividade
3.
Brain Struct Funct ; 229(3): 705-727, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38329543

RESUMO

In the adult mammalian brain, astrocytes are proposed to be the major Sonic Hedgehog (Shh)-responsive cells. However, the sources of the Shh molecule mediating activation of the pathway are still poorly characterized. The present work investigates the distribution and phenotype of cells expressing Shh mRNA in the adult mouse brain. Using single-molecule fluorescent in situ hybridization (smfISH), we report much broader expression of Shh transcripts in almost all brain regions than originally reported. We identify Shh mRNA in HuC/D+ neuronal populations, including GABAergic (glutamic acid decarboxylase 67, Gad67), cholinergic (choline acetyltransferase, ChAT), dopaminergic (tyrosine hydroxylase, TH), nitrergic (neuronal nitric oxide synthase, nNOS), and in a small population of oligodendroglial cells expressing Sox10 and Olig2 mRNA transcription factors. Further analysis of Shh mRNA in cerebral cortical and hypothalamic neurons suggests that Shh is also expressed by glutamatergic neurons. Interestingly, we did not observe substantial Desert Hedgehog and Indian Hedgehog mRNA signals, nor Shh signals in S100ß+ astrocytes and Iba1+ microglial cells. Collectively, the present work provides the most robust central map of Shh-expressing cells to date and underscores the importance of nitrergic neurons in regulating Shh availability to brain cells. Thus, our study provides a framework for future experiments aimed at better understanding of the functions of Shh signaling in the brain in normal and pathological states, and the characterization of novel regulatory mechanisms of the signaling pathway.


Assuntos
Proteínas Hedgehog , Neurônios , Camundongos , Animais , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Hibridização in Situ Fluorescente , Neurônios/metabolismo , Encéfalo/metabolismo , RNA Mensageiro/metabolismo , Mamíferos
4.
Mol Pharmacol ; 83(5): 1020-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23448715

RESUMO

Activation of the Smoothened (Smo) receptor mediates Hedgehog (Hh) signaling. Hh inhibitors are in clinical trials for cancer, and small-molecule Smo agonists may have therapeutic interests in regenerative medicine. Here, we have generated and validated a pharmacophoric model for Smo agonists and used this model for the virtual screening of a library of commercially available compounds. Among the 20 top-scoring ligands, we have identified and characterized a novel quinolinecarboxamide derivative, propyl 4-(1-hexyl-4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxamido) benzoate, (GSA-10), as a Smo agonist. GSA-10 fits to the agonist pharmacophoric model with two hydrogen bond acceptor groups and four hydrophobic regions. Using pharmacological, biochemical, and molecular approaches, we provide compelling evidence that GSA-10 acts at Smo to promote the differentiation of multipotent mesenchymal progenitor cells into osteoblasts. However, this molecule does not display the hallmarks of reference Smo agonists. Remarkably, GSA-10 does not recognize the classic bodipy-cyclopamine binding site. Its effect on cell differentiation is inhibited by Smo antagonists, such as MRT-83, SANT-1, LDE225, and M25 in the nanomolar range, by GDC-0449 in the micromolar range, but not by cyclopamine and CUR61414. Thus, GSA-10 allows the pharmacological characterization of a novel Smo active site, which is notably not targeted to the primary cilium and strongly potentiated by forskolin and cholera toxin. GSA-10 belongs to a new class of Smo agonists and will be helpful for dissecting Hh mechanism of action, with important implications in physiology and in therapy.


Assuntos
Quinolinas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Benzoatos/farmacologia , Sítios de Ligação/efeitos dos fármacos , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , AMP Cíclico/metabolismo , Cicloexilaminas/farmacologia , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Ligantes , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas , Receptor Smoothened , Tiofenos/farmacologia , Fatores de Transcrição/metabolismo , Proteínas Wnt/metabolismo , Proteína GLI1 em Dedos de Zinco
5.
Med Sci (Paris) ; 29(10): 855-60, 2013 Oct.
Artigo em Francês | MEDLINE | ID: mdl-24148123

RESUMO

The Smoothened (Smo) receptor is a major component involved in signal transduction of the Hedgehog (Hh) morphogens both during embryogenesis and in the adult. Smo antagonists represent a promi-sing alternative for the treatment of cancers linked to abnormal Hh signalling. The crystal structure of the human Smo receptor bound to an antitumour agent demonstrates that this receptor belongs to the superfamily of G-protein coupled receptors. The antagonist binds to a pocket localized at the extracellular side formed by the seven transmembrane domains and the complex arrangement of the unusually long extracellular loops. The structure of the Smo receptor will promote the development of small molecules interacting with a key therapeutic target with interests in regenerative medicine and cancer.


Assuntos
Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Adulto , Antineoplásicos/uso terapêutico , Ensaios Clínicos como Assunto , Cristalografia , Humanos , Modelos Moleculares , Terapia de Alvo Molecular , Neoplasias/genética , Neoplasias/terapia , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/genética , Receptor Smoothened
7.
Mol Pharmacol ; 79(3): 453-60, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21177415

RESUMO

There is a clear need to develop novel pharmacological tools to improve our understanding of Smoothened (Smo) function in normal and pathological states. Here, we report the discovery, the mechanism of action, and the in vivo activity of N-(2-methyl-5-(3-(3,4,5-trimethoxybenzoyl)guanidino)phenyl)biphenyl-4-carboxamide (MRT-83), a novel potent antagonist of Smo that belongs to the acylguanidine family of molecules. MRT-83 fits to a proposed pharmacophoric model for Smo antagonists with three hydrogen bond acceptor groups and three hydrophobic regions. MRT-83 blocks Hedgehog (Hh) signaling in various assays with an IC50 in the nanomolar range, showing greater potency than the reference Smo antagonist cyclopamine. MRT-83 inhibits Bodipy-cyclopamine binding to human and mouse Smo but does not modify Wnt signaling in human embryonic kidney 293 transiently transfected with a Tcf/Lef-dependent Firefly luciferase reporter together with a Renilla reniformis luciferase control reporter. MRT-83 abrogates the agonist-induced trafficking of endogenous mouse or human Smo to the primary cilium of C3H10T1/2 or NT2 cells that derive from a pluripotent testicular carcinoma. Stereotaxic injection into the lateral ventricle of adult mice of MRT-83 but not of a structurally related compound inactive at Smo abolished up-regulation of Patched transcription induced by Sonic Hedgehog in the neighboring subventricular zone. These data demonstrate that MRT-83 efficiently antagonizes Hh signaling in vivo. All together, these molecular, functional and biochemical studies provide evidence that MRT-83 interacts with Smo. Thus, this novel Smo antagonist will be useful for manipulating Hh signaling and may help develop new therapies against Hh-pathway related diseases.


Assuntos
Benzamidas/farmacologia , Guanidinas/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Linhagem Celular , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Receptores Patched , Ligação Proteica , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/biossíntese , Receptores Acoplados a Proteínas G/biossíntese , Transdução de Sinais/efeitos dos fármacos , Receptor Smoothened , Alcaloides de Veratrum/farmacologia , Proteínas Wnt/efeitos dos fármacos , Proteínas Wnt/fisiologia
8.
Bioorg Med Chem Lett ; 21(12): 3608-12, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21592788

RESUMO

Desmethylveramiline (1), an aza steroid analogue of veramiline was designed as a surrogate for cyclopamine, a reference antagonist of the Sonic Hedgehog (Shh) pathway. Desmethyveramiline (1) was prepared in seven steps from commercially available Fernholtz acid using the hydroformylation of a terminal olefine as the key step for the construction of the piperidine appendage. In two assays (i) the inhibition of the Shh-induced Gli-dependent luciferase activity in Shh-light2 cells, (ii) the inhibition of the SAG-induced differentiation of the mesenchymal C3H10T1/2 cells, desmethylveramiline (1) is an inhibitor in the µM range comparable to cyclopamine.


Assuntos
Colesterol/análogos & derivados , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Proteínas Hedgehog/antagonistas & inibidores , Piperidinas/síntese química , Piperidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Colesterol/síntese química , Colesterol/química , Colesterol/farmacologia , Inibidores Enzimáticos/química , Camundongos , Modelos Moleculares , Estrutura Molecular , Células NIH 3T3 , Piperidinas/química , Alcaloides de Veratrum/farmacologia
9.
Front Cell Neurosci ; 15: 801704, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35082605

RESUMO

The regeneration of myelin is known to restore axonal conduction velocity after a demyelinating event. Remyelination failure in the central nervous system contributes to the severity and progression of demyelinating diseases such as multiple sclerosis. Remyelination is controlled by many signaling pathways, such as the Sonic hedgehog (Shh) pathway, as shown by the canonical activation of its key effector Smoothened (Smo), which increases the proliferation of oligodendrocyte precursor cells via the upregulation of the transcription factor Gli1. On the other hand, the inhibition of Gli1 was also found to promote the recruitment of a subset of adult neural stem cells and their subsequent differentiation into oligodendrocytes. Since Smo is also able to transduce Shh signals via various non-canonical pathways such as the blockade of Gli1, we addressed the potential of non-canonical Smo signaling to contribute to oligodendroglial cell maturation in myelinating cells using the non-canonical Smo agonist GSA-10, which downregulates Gli1. Using the Oli-neuM cell line, we show that GSA-10 promotes Gli2 upregulation, MBP and MAL/OPALIN expression via Smo/AMP-activated Protein Kinase (AMPK) signaling, and efficiently increases the number of axonal contact/ensheathment for each oligodendroglial cell. Moreover, GSA-10 promotes the recruitment and differentiation of oligodendroglial progenitors into the demyelinated corpus callosum in vivo. Altogether, our data indicate that non-canonical signaling involving Smo/AMPK modulation and Gli1 downregulation promotes oligodendroglia maturation until axon engagement. Thus, GSA-10, by activation of this signaling pathway, represents a novel potential remyelinating agent.

10.
Mol Metab ; 47: 101172, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33513436

RESUMO

OBJECTIVE: Astrocytes are glial cells proposed as the main Sonic hedgehog (Shh)-responsive cells in the adult brain. Their roles in mediating Shh functions are still poorly understood. In the hypothalamus, astrocytes support neuronal circuits implicated in the regulation of energy metabolism. In this study, we investigated the impact of genetic activation of Shh signaling on hypothalamic astrocytes and characterized its effects on energy metabolism. METHODS: We analyzed the distribution of gene transcripts of the Shh pathway (Ptc, Gli1, Gli2, and Gli3) in astrocytes using single molecule fluorescence in situ hybridization combined with immunohistofluorescence of Shh peptides by Western blotting in the adult mouse hypothalamus. Based on the metabolic phenotype, we characterized Glast-CreERT2-YFP-Ptc-/- (YFP-Ptc-/-) mice and their controls over time and under a high-fat diet (HFD) to investigate the potential effects of conditional astrocytic deletion of the Shh receptor Patched (Ptc) on metabolic efficiency, insulin sensitivity, and systemic glucose metabolism. Molecular and biochemical assays were used to analyze the alteration of key pathways modulating energy metabolism, insulin sensitivity, glucose uptake, and inflammation. Primary astrocyte cultures were used to evaluate a potential role of Shh signaling in astrocytic glucose uptake. RESULTS: Shh peptides were the highest in the hypothalamic extracts of adult mice and a large population of hypothalamic astrocytes expressed Ptc and Gli1-3 mRNAs. Characterization of Shh signaling after conditional Ptc deletion in the YFP-Ptc-/- mice revealed heterogeneity in hypothalamic astrocyte populations. Interestingly, activation of Shh signaling in Glast+ astrocytes enhanced insulin responsiveness as evidenced by glucose and insulin tolerance tests. This effect was maintained over time and associated with lower blood insulin levels and also observed under a HFD. The YFP-Ptc-/- mice exhibited a lean phenotype with the absence of body weight gain and a marked reduction of white and brown adipose tissues accompanied by increased whole-body fatty acid oxidation. In contrast, food intake, locomotor activity, and body temperature were not altered. At the cellular level, Ptc deletion did not affect glucose uptake in primary astrocyte cultures. In the hypothalamus, activation of the astrocytic Shh pathway was associated with the upregulation of transcripts coding for the insulin receptor and liver kinase B1 (LKB1) after 4 weeks and the glucose transporter GLUT-4 after 32 weeks. CONCLUSIONS: Here, we define hypothalamic Shh action on astrocytes as a novel master regulator of energy metabolism. In the hypothalamus, astrocytic Shh signaling could be critically involved in preventing both aging- and obesity-related metabolic disorders.


Assuntos
Astrócitos/metabolismo , Glucose/metabolismo , Proteínas Hedgehog/metabolismo , Receptores Patched/metabolismo , Envelhecimento , Animais , Astrócitos/patologia , Metabolismo Energético/genética , Células HEK293 , Proteínas Hedgehog/genética , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Hibridização in Situ Fluorescente , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Neurônios/metabolismo , Obesidade , Receptores Patched/deficiência , Receptores Patched/genética , Transdução de Sinais , Ativação Transcricional
11.
Mol Pharmacol ; 78(4): 658-65, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20664000

RESUMO

The seven-transmembrane receptor Smoothened (Smo) is the major component involved in signal transduction of the Hedgehog (Hh) morphogens. Smo inhibitors represent a promising alternative for the treatment of several types of cancers linked to abnormal Hh signaling. Here, on the basis of experimental data, we generated and validated a pharmacophoric model for Smo inhibitors constituted by three hydrogen bond acceptor groups and three hydrophobic regions. We used this model for the virtual screening of a library of commercially available compounds. Visual and structural criteria allowed the selection of 20 top scoring ligands, and an acylthiourea, N-(3-benzamidophenylcarbamothioyl)-3,4,5-trimethoxybenzamide (MRT-10), was identified and characterized as a Smo antagonist. The corresponding acylurea, N-(3-benzamidophenylcarbamoyl)-3,4,5-trimethoxybenzamide (MRT-14), was synthesized and shown to display, in various Hh assays, an inhibitory potency comparable to or greater than that of reference Smo antagonists cyclopamine and N-((3S,5S)-1-(benzo[d][1,3]dioxol-5-ylmethyl)-5-(piperazine-1-carbonyl)pyrrolidin-3-yl)-N-(3-methoxybenzyl)-3,3-dimethylbutanamide (Cur61414). Focused virtual screening of the same library further identified five additional related antagonists. MRT-10 and MRT-14 constitute the first members of novel families of Smo antagonists. The described virtual screening approach is aimed at identifying novel modulators of Smo and of other G-protein coupled receptors.


Assuntos
Descoberta de Drogas/métodos , Bibliotecas Digitais , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Tioureia/química , Animais , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Camundongos , Camundongos Endogâmicos C3H , Receptores Acoplados a Proteínas G/fisiologia , Receptor Smoothened , Tioureia/metabolismo
12.
Bioorg Med Chem Lett ; 20(24): 7483-7, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21041081

RESUMO

The design, synthesis and calcimimetic properties of various cyclic sulfonamides and sulfamates are described. The latter were prepared from the corresponding o-alkenylarenesulfonamides via copper- or rhodium-catalyzed intramolecular aziridination. The size of the cyclic sulfonamide rings as well as the position of the crucial (R)-naphthylethylamine substituent significantly affected calcimimetic activity. The most active compounds were the six- and seven-membered sulfonamides 30a and 31a and sulfamate 34a.


Assuntos
Calcimiméticos/síntese química , Receptores de Detecção de Cálcio/agonistas , Sulfonamidas/química , Ácidos Sulfônicos/química , Animais , Calcimiméticos/química , Calcimiméticos/farmacologia , Catálise , Cobre/química , Cristalografia por Raios X , Ciclização , Desenho de Fármacos , Humanos , Conformação Molecular , Mutação , Ratos , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Ródio/química , Estereoisomerismo , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/farmacologia , Ácidos Sulfônicos/síntese química , Ácidos Sulfônicos/farmacologia
13.
PLoS One ; 15(2): e0229362, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32078657

RESUMO

In the mature rodent brain, Sonic Hedgehog (Shh) signaling regulates stem and progenitor cell maintenance, neuronal and glial circuitry and brain repair. However, the sources and distribution of Shh mediating these effects are still poorly characterized. Here, we report in the adult mouse brain, a broad expression pattern of Shh recognized by the specific monoclonal C9C5 antibody in a subset (11-12%) of CC1+ mature oligodendrocytes that do not express carbonic anhydrase II. These cells express also Olig2 and Sox10, two oligodendrocyte lineage-specific markers, but not PDGFRα, a marker of oligodendrocyte progenitors. In agreement with oligodendroglial cells being a source of Shh in the adult mouse brain, we identify Shh transcripts by single molecule fluorescent in situ hybridization in a subset of cells expressing Olig2 and Sox10 mRNAs. These findings also reveal that Shh expression is more extensive than originally reported. The Shh-C9C5-associated signal labels the oligodendroglial cell body and decorates by intense puncta the processes. C9C5+ cells are distributed in a grid-like manner. They constitute small units that could deliver locally Shh to its receptor Patched expressed in GFAP+ and S100ß+ astrocytes, and in HuC/D+ neurons as shown in PtcLacZ/+ reporter mice. Postnatally, C9C5 immunoreactivity overlaps the myelination peak that occurs between P10 and P20 and is down regulated during ageing. Thus, our data suggest that C9C5+CC1+ oligodendroglial cells are a source of Shh in the mouse postnatal brain.


Assuntos
Anticorpos Monoclonais/imunologia , Encéfalo/metabolismo , Proteínas Hedgehog/imunologia , Proteínas Hedgehog/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Animais , Encéfalo/imunologia , Células Cultivadas , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/imunologia , Oligodendroglia/imunologia , Receptores Patched/imunologia , Receptores Patched/metabolismo
14.
Cell Calcium ; 44(2): 210-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18221783

RESUMO

In this study, the presence of GPRC6A receptors in rat mesenteric artery was investigated. In artery homogenates, GPRC6A mRNA was detected and Western blotting showed the presence of GPRC6A protein. Immunohistochemical studies revealed GPRC6A in both endothelial cells and myocytes. In whole vessel segments, the GPRC6A activators, 300 microM l-ornithine and 100 microM Al(3+), induced endothelium-dependent myocyte hyperpolarizations sensitive to 10 microM TRAM-34, a blocker of intermediate conductance, Ca(2+)-sensitive K(+) channels (IK(Ca)). Activation of IK(Ca) with calindol (300 nM; a positive allosteric Ca(2+)-sensing receptor - CaR - modulator) was inhibited by 500 nM ouabain (inhibition of rat type 2 and type 3 Na(+)/K(+)-ATPases) but unaffected by 30 microM Ba(2+) (blockade of inwardly rectifying K(+) channels). Neither l-ornithine nor Al(3+) activated CaRs heterologously expressed in CHO or HEK293 cells. In the presence of 300 microM l-ornithine or 100 microM Al(3+), myocyte hyperpolarizations to calindol were potentiated whereas this potentiation and hyperpolarizations to l-ornithine were lost following incubation with an anti-GPRC6A antibody. It is concluded that GPRC6A receptors are present on mesenteric artery endothelial cells and myocytes and that their activation selectively opens IK(Ca) channels. This triggers a ouabain-sensitive myocyte hyperpolarization suggesting a close functional relationship between GPRC6A, the IK(Ca) channel and type 2 and/or type 3 Na(+)/K(+)-ATPases.


Assuntos
Cálcio/metabolismo , Vasos Coronários/metabolismo , Endotélio Vascular/metabolismo , Artérias Mesentéricas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Western Blotting , Células CHO , Cardiotônicos/farmacologia , Células Cultivadas , Vasos Coronários/citologia , Vasos Coronários/efeitos dos fármacos , Cricetinae , Cricetulus , Eletrofisiologia , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Humanos , Indóis/farmacologia , Inositol/metabolismo , Rim/citologia , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Artérias Mesentéricas/citologia , Artérias Mesentéricas/efeitos dos fármacos , Células Musculares/citologia , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Naftalenos/farmacologia , Ornitina/farmacologia , Ouabaína/farmacologia , Fosforilação/efeitos dos fármacos , Canais de Potássio Cálcio-Ativados/metabolismo , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Suínos
15.
Neuroreport ; 18(4): 395-9, 2007 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-17435610

RESUMO

The seven-transmembrane receptor Smoothened is essential for hedgehog signal transduction. In adulthood, the highest density of Smoothened mRNA is found in the granule cell layer of the dentate gyrus. There, Smoothened expression is regulated by the synaptic activity involving the glutamatergic transmission. The precise localization of Smoothened proteins, however, has not yet been reported. Here, we describe Smoothened protein distribution in the hippocampal mossy fibers using specific Smoothened antibodies. We provide evidences for their presynaptic localization, and using electron microscopy, show that Smoothened is located in close association with synaptic vesicles and rarely with the plasma membrane. These findings demonstrate that Smoothened is localized presynaptically and suggest that Smoothened signal transduction may be implicated in the complex aspects of mossy fiber function.


Assuntos
Giro Denteado/citologia , Fibras Musgosas Hipocampais/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Glicoproteínas de Membrana/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão/métodos , Fibras Musgosas Hipocampais/ultraestrutura , Proteínas do Tecido Nervoso/metabolismo , Receptor Smoothened , Frações Subcelulares/metabolismo , Frações Subcelulares/ultraestrutura
16.
BMJ Open ; 7(12): e018647, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29247106

RESUMO

OBJECTIVES: We examined major issues associated with sharing of individual clinical trial data and developed a consensus document on providing access to individual participant data from clinical trials, using a broad interdisciplinary approach. DESIGN AND METHODS: This was a consensus-building process among the members of a multistakeholder task force, involving a wide range of experts (researchers, patient representatives, methodologists, information technology experts, and representatives from funders, infrastructures and standards development organisations). An independent facilitator supported the process using the nominal group technique. The consensus was reached in a series of three workshops held over 1 year, supported by exchange of documents and teleconferences within focused subgroups when needed. This work was set within the Horizon 2020-funded project CORBEL (Coordinated Research Infrastructures Building Enduring Life-science Services) and coordinated by the European Clinical Research Infrastructure Network. Thus, the focus was on non-commercial trials and the perspective mainly European. OUTCOME: We developed principles and practical recommendations on how to share data from clinical trials. RESULTS: The task force reached consensus on 10 principles and 50 recommendations, representing the fundamental requirements of any framework used for the sharing of clinical trials data. The document covers the following main areas: making data sharing a reality (eg, cultural change, academic incentives, funding), consent for data sharing, protection of trial participants (eg, de-identification), data standards, rights, types and management of access (eg, data request and access models), data management and repositories, discoverability, and metadata. CONCLUSIONS: The adoption of the recommendations in this document would help to promote and support data sharing and reuse among researchers, adequately inform trial participants and protect their rights, and provide effective and efficient systems for preparing, storing and accessing data. The recommendations now need to be implemented and tested in practice. Further work needs to be done to integrate these proposals with those from other geographical areas and other academic domains.


Assuntos
Pesquisa Biomédica/normas , Ensaios Clínicos como Assunto , Consenso , Disseminação de Informação/métodos , Comitês Consultivos , Humanos
17.
J Med Chem ; 49(17): 5119-28, 2006 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-16913701

RESUMO

A structure-activity relationship (SAR) study was performed principally at the N1 position of N1-arylsulfonyl-N2-[1-(1-naphthyl)ethyl]-trans-1,2-diaminocyclohexanes, a new family of calcilytics acting at the calcium sensing receptor (CaSR). The most active compound in this series was the 4-(trifluoromethoxy)benzenesulfonyl derivative 7e, which displayed an IC50 of 5.4 +/- 0.5 microM with respect to the inhibition of calcium-induced tritiated inositol phosphate ([3H]IP) accumulation in Chinese hamster ovarian (CHO) cells expressing the CaSR. Replacement of the sulfonamide linkage of this compound by a carboxamide led to a 6-fold increase in activity (7m, IC50 = 0.9 +/- 0.2 microM). Among the carboxamides synthesized, one of the most active compounds was the 4-chlorophenylcarboxamide (1S,2S,1'R)-7n (Calhex 231, IC50 = 0.33 +/- 0.02 microM). The absolute configuration of (1S,2S,1'R)-7n was deduced from an X-ray crystallographic study of one of the diastereomers of compound 7d. The stereochemical preference for the (1S,2S,1'R)-isomers can be rationalized on the basis of a three-dimensional model of the calcilytic binding pocket of the CaSR. Removal of the C-1' methyl group or replacement of the 1-naphthyl group by a 2-naphthyl or biphenyl moiety led to appreciable loss of calcilytic activity. Compounds 7e, 7m, and Calhex 231 did not stimulate [3H]IP accumulation in CHO cells expressing or not expressing the CaSR.


Assuntos
Benzamidas/farmacologia , Cicloexilaminas/farmacologia , Receptores de Detecção de Cálcio/efeitos dos fármacos , Animais , Benzamidas/síntese química , Benzamidas/química , Células CHO , Cricetinae , Cristalografia por Raios X , Cicloexilaminas/síntese química , Cicloexilaminas/química , Fosfatos de Inositol/antagonistas & inibidores , Fosfatos de Inositol/metabolismo , Ligantes , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Ratos , Receptores de Detecção de Cálcio/biossíntese , Receptores de Detecção de Cálcio/genética , Estereoisomerismo , Relação Estrutura-Atividade
18.
Stem Cell Reports ; 7(4): 735-748, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27666792

RESUMO

Identifying the mechanisms controlling quiescence and activation of neural stem cells (NSCs) is crucial for understanding brain repair. Here, we demonstrate that Hedgehog (Hh) signaling actively regulates different pools of quiescent and proliferative NSCs in the adult ventricular-subventricular zone (V-SVZ), one of the main brain neurogenic niches. Specific deletion of the Hh receptor Patched in NSCs during adulthood upregulated Hh signaling in quiescent NSCs, progressively leading to a large accumulation of these cells in the V-SVZ. The pool of non-neurogenic astrocytes was not modified, whereas the activated NSC pool increased after a short period, before progressively becoming exhausted. We also showed that Sonic Hedgehog regulates proliferation of activated NSCs in vivo and shortens both their G1 and S-G2/M phases in culture. These data demonstrate that Hh orchestrates the balance between quiescent and activated NSCs, with important implications for understanding adult neurogenesis under normal homeostatic conditions or during injury.


Assuntos
Proteínas Hedgehog/metabolismo , Ventrículos Laterais/citologia , Ventrículos Laterais/metabolismo , Células-Tronco Neurais/metabolismo , Fase de Repouso do Ciclo Celular , Transdução de Sinais , Animais , Ciclo Celular , Deleção de Genes , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neurogênese , Neurônios , Receptores Patched/genética , Nicho de Células-Tronco
19.
Eur J Med Chem ; 121: 747-757, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27429255

RESUMO

Smoothened (Smo) is the signal transducer of the Hedgehog (Hh) pathway and its stimulation is considered a potential powerful tool in regenerative medicine to treat severe tissue injuries. Starting from GSA-10, a recently reported Hh activator acting on Smo, we have designed and synthesized a new class of quinolone-based compounds. Modification and decoration of three different portions of the original scaffold led to compounds able to induce differentiation of multipotent mesenchymal cells into osteoblasts. The submicromolar activity of several of these new quinolones (0.4-0.9 µM) is comparable to or better than that of SAG and purmorphamine, two reference Smo agonists. Structure-activity relationships allow identification of several molecular determinants important for the activity of these compounds.


Assuntos
Desenho de Fármacos , Osteogênese/efeitos dos fármacos , Quinolonas/química , Quinolonas/farmacologia , Animais , Técnicas de Química Sintética , Avaliação Pré-Clínica de Medicamentos , Proteínas Hedgehog/metabolismo , Camundongos , Modelos Moleculares , Células NIH 3T3 , Quinolonas/síntese química , Relação Estrutura-Atividade
20.
Sci Rep ; 6: 23479, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27010359

RESUMO

Hedgehog (Hh) is a critical regulator of adipogenesis. Extracellular vesicles are natural Hh carriers, as illustrated by activated/apoptotic lymphocytes specifically shedding microparticles (MP) bearing the morphogen (MP(Hh+)). We show that MP(Hh+) inhibit adipocyte differentiation and orientate mesenchymal stem cells towards a pro-osteogenic program. Despite a Smoothened (Smo)-dependency, MP(Hh+) anti-adipogenic effects do not activate a canonical Hh signalling pathway in contrast to those elicited either by the Smo agonist SAG or recombinant Sonic Hedgehog. The Smo agonist GSA-10 recapitulates many of the hallmarks of MP(Hh+) anti-adipogenic effects. The adipogenesis blockade induced by MP(Hh+) and GSA-10 was abolished by the Smo antagonist LDE225. We further elucidate a Smo/Lkb1/Ampk axis as the non-canonical Hh pathway used by MP(Hh+) and GSA-10 to inhibit adipocyte differentiation. Our results highlight for the first time the ability of Hh-enriched MP to signal via a non-canonical pathway opening new perspectives to modulate fat development.


Assuntos
Adipócitos/citologia , Diferenciação Celular/fisiologia , Proteínas Hedgehog/fisiologia , Células 3T3-L1 , Animais , Células Cultivadas , Proteínas Hedgehog/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa