Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(30): e2300616, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37035942

RESUMO

Nickel-rich layered oxides are adopted as electrode materials for EV's. They suffer from a capacity loss when the cells are charged above 4.15 V versus Li/Li+ . Doping and coating can lead to significant improvement in cycling. However, the mechanisms involved at high voltage are not clear. This work is focused on LiNiO2 to overcome the effect of M cations. Galvanostatic intermittent titration technique (GITT) and in situ X-ray diffraction (XRD) experiments are performed at very low rates in various voltage ranges (3.8-4.3 V,). On the "4.2-4.3 V" plateau the R2 phase is transformed simultaneously in R3, R3 with H4 stacking faults and H4. As the charge proceeds above 4.17 V cell polarization increases, hindering Li deintercalation. In discharge, such polarization decreases immediately. Upon cycling, the polarization increases at each charge above 4.17 V. In discharge, the capacity and dQ/dV features below 4.1 V remain constant and unaffected, suggesting that the bulk of the material do not undergo significant structural defect. This study shows that the change in polarization results from the electrochemical behavior of the grain surface having very low conductivity above 4.17 V and high conductivity below this threshold. This new approach can explain the behavior observed with dopants like tungsten.

2.
Nat Mater ; 20(11): 1545-1550, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34326505

RESUMO

Insertion compounds provide the fundamental basis of today's commercialized Li-ion batteries. Throughout history, intense research has focused on the design of stellar electrodes mainly relying on layered oxides or sulfides, and leaving aside the corresponding halides because of solubility issues. This is no longer true. In this work, we show the feasibility of reversibly intercalating Li+ electrochemically into VX3 compounds (X = Cl, Br, I) via the use of superconcentrated electrolytes (5 M LiFSI in dimethyl carbonate), hence opening access to a family of LixVX3 phases. Moreover, through an electrolyte engineering approach, we unambiguously prove that the positive attribute of superconcentrated electrolytes against the solubility of inorganic compounds is rooted in a thermodynamic rather than a kinetic effect. The mechanism and corresponding impact of our findings enrich the fundamental understanding of superconcentrated electrolytes and constitute a crucial step in the design of novel insertion compounds with tunable properties for a wide range of applications including Li-ion batteries and beyond.


Assuntos
Eletrólitos , Lítio , Fontes de Energia Elétrica , Eletroquímica , Eletrodos , Eletrólitos/química , Lítio/química
3.
Inorg Chem ; 60(23): 17824-17836, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34743519

RESUMO

A new series of Ba2-xBixCoRuO6 (0.0 ≤ x ≤ 0.6) hexagonal double perovskite oxides have been synthesized by a solid-state reaction method by substituting Ba with Bi. The polycrystalline materials are structurally characterized by the laboratory X-ray diffraction, synchrotron X-ray, and neutron powder diffraction. The lattice parameters are found to increase with increasing Bi doping despite the smaller ionic radius of Bi3+ compared to Ba2+. The expansion is attributed to the reduction of Co/Ru-site cations. Scanning electron microscopy further shows that the grain size increases with the Bi content. All Ba2-xBixCoRuO6 (0.0 ≤ x ≤ 0.6) samples exhibit p-type behavior, and the electrical resistivity (ρ) is consistent with a small polaron hopping model. The Seebeck coefficient (S) and thermal conductivity (κ) are improved significantly with Bi doping. High values of the power factor (PF ∼ 6.64 × 10-4 W/m·K2) and figure of merit (zT ∼ 0.23) are obtained at 618 K for the x = 0.6 sample. These results show that Bi doping is an effective approach for enhancing the thermoelectric properties of hexagonal Ba2-xBixCoRuO6 perovskite oxides.

4.
Inorg Chem ; 60(18): 14310-14317, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34472850

RESUMO

The reaction between P2-type honeycomb layered oxides Na2Ni2TeO6 and K2Ni2TeO6 enables the formation of NaKNi2TeO6. The compound is characterized by X-ray diffraction and 23Na solid-state nuclear magnetic resonance spectroscopy, and the structure is discussed through density functional theory calculations. In addition to the honeycomb Ni/Te cationic ordering, NaKNi2TeO6 exhibits a unique example of alternation of sodium and potassium layers instead of a random alkali-mixed occupancy. Stacking fault simulations underline the impact of the successive position of the Ni/Te honeycomb layers and validate the presence of multiple stacking sequences within the powder material, in proportions that evolve with the synthesis conditions. In a broader context, this work contributes to a better understanding of the alkali-mixed layered compounds.

5.
J Am Chem Soc ; 142(43): 18422-18436, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33054192

RESUMO

Fast-ion conductors are critical to the development of solid-state batteries. The effects of mechanochemical synthesis that lead to increased ionic conductivity in an archetypical sodium-ion conductor Na3PS4 are not fully understood. We present here a comprehensive analysis based on diffraction (Bragg and pair distribution function), spectroscopy (impedance, Raman, NMR and INS), and ab initio simulations aimed at elucidating the synthesis-property relationships in Na3PS4. We consolidate previously reported interpretations regarding the local structure of ball-milled samples, underlining the sodium disorder and showing that a local tetragonal framework more accurately describes the structure than the originally proposed cubic one. Through variable-pressure impedance spectroscopy measurements, we report for the first time the activation volume for Na+ migration in Na3PS4, which is ∼30% higher for the ball-milled samples. Moreover, we show that the effect of ball-milling on increasing the ionic conductivity of Na3PS4 to ∼10-4 S/cm can be reproduced by applying external pressure on a sample from conventional high-temperature ceramic synthesis. We conclude that the key effects of mechanochemical synthesis on the properties of solid electrolytes can be analyzed and understood in terms of pressure, strain, and activation volume.

6.
Inorg Chem ; 59(5): 2890-2899, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32069031

RESUMO

We prepared Al-doped LCO (LCA) powders with low Al content (4%) with a controlled Li/(Co + Al) stoichiometry by a solid-state reaction using Li2CO3 and two types of Co/Al precursors: simply mixed (Co3O4 and Al2O3) or heat-treated (Co3O4 and Al2O3). These samples were thereby used to propose a reliable protocol with the aim to discuss the homogeneity of the Al doping for LiCo1-yAlyO2 (LCA) prepared with low Al content by evidencing the distribution of Al within the powders, which clearly affects the electrochemical profiles of associated LCA//Li cells. For all samples we initially also characterized the Li/(Co + Al) stoichiometry by 7Li MAS NMR, to discard the possible effect of excess Li in the samples. Synchrotron XRD combined with 27Al and 59Co MAS NMR then provided a deep understanding of the doping homogeneity at the powder or particle scale. We showed that doping the Co3O4 spinel precursor by reacting it with Al2O3 may be avoided, as it most likely leads to an inhomogeneous mixture of Co3O4 and Co3-zAlzO4 as precursor, eventually reflecting in the final LiCo0.96Al0.04O2 powder, which shows a nonhomogeneous Al distribution. We believe that such a detailed characterization should be the first step toward a deeper understanding of the real beneficial effect(s) of Al doping on the high voltage performance of LCO.

7.
Inorg Chem ; 59(21): 15757-15771, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33075223

RESUMO

We have investigated the role of oxygen stoichiometry and structural properties in the modulation of Co valence and spin state in single-layer La2-xAxCoO4±Î´ (A = Sr, Ca; 0 ≤ x ≤ 1) perovskites as well as the interplay between their local structural properties and the magnetic and charge-ordering phenomena. We show the results of high angular resolution powder X-ray diffraction and Co K-edge X-ray absorption and emission spectroscopy experiments on polycrystalline and single-crystal samples. The different doping-induced changes in the Co valence and spin state by Ca (or Sr) substitution can be understood in terms of the evolving oxygen stoichiometry. For Ca doping, the interstitial oxygen excess around the La/Ca atoms in underdoped samples is rapidly lost upon increasing the Ca content. The creation of oxygen vacancies leads to the stabilization of a mixed-valence Co2.5+ independently of the Ca content. In contrast, Sr substitution leads to almost stoichiometric samples and a lower oxygen vacancy concentration, which allows higher mixed-valence states for Co up to Co2.9+. The Co mixed-valence state along the two series is fluctuating between two valence states, Co2.4+ as in La2CoO4.2 and Co2.9+ as in LaSrCoO3.91, that become periodically ordered for the charge-ordered phases around the half-doping. The X-ray emission derived spin states agree well with the Co fluctuating mixed-valence state derived from X-ray absorption spectroscopy on consideration of a distribution of high-spin Co2+ and low-spin Co3+. Furthermore, there is no quenching of the orbital contribution for the high-spin Co2+, as concluded from a comparison with macroscopic magnetization measurements. Doping holes are mainly located in the ab plane and have a strong oxygen 2p character. The major lattice distortions, which are different for Sr and Ca doping, occur along the c axis, where changes in the oxygen stoichiometry take place. Moreover, charge-order transitions are clearly shown from the anomalous increase of the c lattice parameter with an increase in the temperature above 500 K but there is no signature for a temperature-dependent spin-state transition.

8.
Inorg Chem ; 59(11): 7553-7560, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32432871

RESUMO

Several different mechanisms of magnetoresistance (MR) have been observed in 1111 LnMnAsO1-xFx oxypnictides (Ln = lanthanide) as a result of magnetic coupling between the Mn and Ln. Such phases also exhibit interesting magnetic phase transitions upon cooling. Sr2Mn2CrAs2O2 has been synthesized to investigate if it is possible to observe MR and/or magnetic phase transitions as a result of magnetic coupling between the Mn and Cr. Sr2Mn2CrAs2O2 crystallizes in the tetragonal space group I4/mmm containing alternating MO22- and M'2As22- layers, and neutron diffraction results demonstrate that the actual stoichiometry is Sr2Mn2.23Cr0.77As2O2. Cation order is present between Mn and Cr, with Cr predominantly occupying the square planar MO22- site. Below 410 K, the magnetic moments of the Mn/Cr ions in the M'2As22- sublattice exhibit G-type antiferromagnetic order. The Mn/Cr moments within the MO22- layer order below 167 K with a K2NiF4-type antiferromagnetic structure that simultaneously induces a spin flip of the magnetic moments in the M'2As22- layers from a G-type to a C-type antiferromagnetic arrangement. The results demonstrate that the superexchange interactions are finely balanced in Sr2Mn2.23Cr0.77As2O2. Sr2Mn2.23Cr0.77As2O2 is semiconducting, and there is no evidence of MR.

9.
Inorg Chem ; 59(9): 6528-6540, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32286842

RESUMO

Solid electrolytes have regained tremendous interest recently in light of the exposed vulnerability of current rechargeable battery technologies. While designing solid electrolytes, most efforts concentrated on creating structural disorder (vacancies, interstitials, etc.) in a cationic Li/Na sublattice to increase ionic conductivity. In phosphates, the ionic conductivity can also be increased by rotational disorder in the anionic sublattice, via a paddle-wheel mechanism. Herein, we report on Na4Zn(PO4)2 which is designed from Na3PO4, replacing Na+ with Zn2+ and introducing a vacancy for charge balance. We show that Na4Zn(PO4)2 undergoes a series of structural transitions under temperature, which are associated with an increase in ionic conductivity by several orders of magnitude. Our detailed crystallographic study, combining electron, neutron, and X-ray powder diffraction, reveals that the room-temperature form, α-Na4Zn(PO4)2, contains orientationally ordered PO4 groups, which undergo partial and full rotational disorder in the high-temperature ß- and γ-polymorphs, respectively. We furthermore showed that the highly conducting γ-polymorph could be stabilized at room temperature by ball-milling, whereas the ß-polymorph can be stabilized by partial substitution of Zn2+ with Ga3+ and Al3+. These findings emphasize the role of rotational disorder as an extra parameter to design new solid electrolytes.

10.
Inorg Chem ; 59(8): 5339-5349, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32250599

RESUMO

The OP4-(Li/Na)xCoO2 phase is an unusual lamellar oxide with a 1:1 alternation between Li and Na interslab spaces. In order to probe the local structure, electronic structure, and dynamics, 7Li and 23Na magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy was performed in complementarity to X-ray diffraction and electronic and magnetic properties measurements. 7Li MAS NMR showed that NMR shifts result from two contributions: the Fermi contact and the Knight shifts due to the presence of both localized and delocalized electrons, which is really unusual. 7Li MAS NMR clearly shows several Li environments, indicating that, moreover, Co ions with different local electronic structures are formed, probably due to the arrangement of the Na+ ions in the next cationic layer. 23Na MAS NMR showed that some Na+ ions are located in the Li layer, which was not previously considered in the structural model. The Rietveld refinement of the synchrotron XRD led to the OP4-[Li0.42Na0.05]Na0.32CoO2 formula for the material. In addition, 7Li and 23Na MAS NMR spectroscopies provide information about the cationic mobility in the material: Whereas no exchange is observed for 7Li up to 450 K, the 23Na spectrum already reveals a single average signal at room temperature due to a much larger ionic mobility.

11.
Inorg Chem ; 59(14): 9798-9806, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32614169

RESUMO

The structural and physical properties of the ß polymorph of iron tungstate Fe2WO6 have been investigated by synchrotron and neutron diffraction vs temperature, combined with magnetization and dielectric properties measurements. The monoclinic P21/a crystal structure of ß-Fe2WO6 has been determined and consists of an original network of zigzag chains of FeO6 and WO6 octahedra sharing trans and skew edges, connected through corners into a 3D structure. Magnetization measurements indicate an antiferromagnetic transition at TN = 264 K, which corresponds to a ↑↑↓↓ nearly collinear ordering of iron moments inside sequences of four edge-sharing FeO6 octahedra, as determined by neutron diffraction. A canting of the moments out of the ac plane is observed below 150 K, leading to a noncollinear antiferromagnetic structure, the P21/a' magnetic space group remaining unchanged. These results are discussed in comparison with the crystal and magnetic structures of γ-Fe2WO6 and with the magnetic couplings in other iron tungstates and trirutile Fe2TeO6.

12.
Inorg Chem ; 59(14): 10048-10058, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32589405

RESUMO

Metal oxyfluorides are currently attracting much attention for next-generation rechargeable batteries because of their high theoretical capacity and resulting high energy density. Rhombohedral VO2F is promising because it allows two-electron transfer during electrochemical lithium cycling, with a theoretical capacity of 526 mAh g-1. However, the chemical changes it undergoes during operation are not clearly understood. In this work, a combination of synchrotron X-ray and neutron diffraction was employed to accurately describe the crystal structure of both pristine and lithiated VO2F, using samples with high crystallinity to overcome challenges in previous studies. The mechanism and reversibility of the lithium insertion was monitored in real time by high angular synchrotron diffraction measurements, performed in operando on a lithium battery in the high-voltage range: 3.9-2.3 V vs Li+/Li. Insertion of up to one lithium ion proceeds through a solid-solution reaction, while Rietveld refinements of neutron powder diffraction data revealed that the lithiated states adopt the noncentrosymmetric R3c framework, uncovering an octahedral Li-(O/F)6 coordination with reasonable Li-O/F bond lengths. This work further evaluates the redox changes of VO2F upon Li intercalation. By a comparison of changes in electronic states of all the elements in the compound, it clarifies the critical role of both anions, O and F, in the charge compensation through their covalent interactions with the 3d states of V. The clear evidence of participation of F challenges existing assumptions that its high electronegativity renders this anion largely a spectator in the redox reaction.

13.
Inorg Chem ; 59(20): 14932-14943, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33006896

RESUMO

Black phosphorus (BP) allotrope has an orthorhombic crystal structure with a narrow bandgap of 0.35 eV. This material is promising for 2D technology since it can be exfoliated down to one single layer: the well-known phosphorene. In this work, bulk BP was synthesized under high-pressure conditions at high temperatures. A detailed structural investigation using neutron and synchrotron X-ray diffraction revealed the occurrence of anisotropic strain effects on the BP lattice; the combination of both sets of diffraction data allowed visualization of the lone electron pair 3s2. Temperature-dependent neutron diffraction data collected at low temperature showed that the a axis (zigzag) exhibits a quasi-temperature-independent thermal expansion in the temperature interval from 20 up to 150 K. These results may be a key to address the anomalous behavior in electrical resistivity near 150 K. Thermoelectric properties were also provided; low thermal conductivity from 14 down to 6 Wm-1K-1 in the range 323-673 K was recorded in our polycrystalline BP, which is below the reported values for single-crystals in literature.

14.
Environ Sci Technol ; 54(2): 851-861, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31789519

RESUMO

Fougerite is a naturally occurring green rust, that is, a layered double hydroxide (LDH) containing iron (Fe). Fougerite was identified in natural settings such as hydromorphic soils. It is one of the few inorganic materials with large anion adsorption capacity that stems from the presence of isomorphic substitutions of Fe2+ by Fe3+ in its layers. The importance of anion adsorption in the interlayer of LDH has often been highlighted, but we are still missing a mechanistic understanding and a thermodynamic framework to predict the anion uptake by green rust. We combined laboratory and in operando synchrotron X-ray diffraction and scattering experiments with geochemical modeling to contribute to filling this gap. We showed that the overall exchange process in green rusts having nanometer and micrometer sizes can be seen as a simple anion exchange mechanism without dissolution-recrystallization or interstratification processes. A thermodynamic model of ion exchange, based on the Rothmund and Kornfeld convention, made it possible to predict the interlayer composition in a large range of conditions. This multiscale characterization can serve as a starting point for the building of robust and mechanistic geochemical models that will allow predicting the role of green rust on the geochemical cycle of ions, including nutrients, in soils.


Assuntos
Ferro , Solo , Adsorção , Troca Iônica , Termodinâmica
15.
J Am Chem Soc ; 141(6): 2305-2315, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30652858

RESUMO

Orthorhombic V2O5 nanowires were successfully synthesized via a hydrothermal method. A cell-configuration system was built utilizing V2O5 as the cathode and 1 M Mg(ClO4)2 electrolyte within acetonitrile, together with Mg xMo6S8 ( x ≈ 2) as the anode to investigate the structural evolution and oxidation state and local structural changes of V2O5. The V2O5 nanowires deliver an initial discharge/charge capacity of 103 mAh g-1/110 mAh g-1 and the highest discharge capacity of 130 mAh g-1 in the sixth cycle at C/20 rate in the cell-configuration system. In operando synchrotron diffraction and in operando X-ray absorption spectroscopy together with ex situ Raman and X-ray photoelectron spectroscopy reveal the reversibility of magnesium insertion/extraction and provide information on the crystal structure evolution and changes of the oxidation states during cycling.

16.
Inorg Chem ; 58(17): 11828-11835, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31432670

RESUMO

RNiO3 (R = rare-earth element) perovskite materials are well-known to exhibit characteristic metal-insulator transitions. The structural distortion increases as the R member becomes smaller along the series. For SmNiO3, a high-hydrostatic-pressure preparation procedure, yielding samples with much enhanced crystalline quality, combined with the extremely high angular resolution of synchrotron X-ray diffraction (XRD) allowed us to identify a monoclinic phase in the insulating regime (below the metal-insulator transition temperature (TMI) of 127 °C), defined in the space group P21/n. This monoclinic symmetry had not been demonstrated directly using nonresonant XRD or neutron diffraction. This has important repercussions on the electronic nature of this material since the monoclinic structure contains two inequivalent Ni positions, implying a charge disproportionation phenomenon. In the metallic regime (above TMI), the standard orthorhombic Pbnm structure is observed. Therefore, there is a coupled structural and electronic transition, as happens for the very small rare-earth compounds of the RNiO3 perovskite series. Across TMI there is a dramatic rearrangement of the lattice parameters, degree of tilting, and distortion of the NiO6 octahedra, showing the convergence of the Ni-O bond lengths upon entering the metallic phase. Brown's valence analysis of the different elements agrees with other reported values in the literature, matching with bond and charge disproportionation models. By magnetization measurements a Néel temperature (TN) corresponding to the antiferromagnetic ordering of the Ni moments is identified at TN= 220 K, whereas Sm moments experience long-range ordering below 36 K.

17.
Inorg Chem ; 58(3): 1774-1781, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30204422

RESUMO

Ionic conductivity in a compound is rooted in a delicate interplay between its crystal structure and its structural defects (vacancies, interstitials, etc.). Hence, understanding this interplay is of utmost importance to design new solid state electrolytes. To shed some light on the above query, we investigated the rich crystal chemistry of Li6Zn(P2O7)2. This compound undergoes multiple structural transitions under the influence of temperature, which increases the conductivity by several orders and lowers the activation energy. We explained this jump in conductivity by the increased disorder associated with cation mixing. Our structural exploration indicates that both the room-temperature α-polymorph and the high-temperature ζ-polymorph crystallize in a C2/ c space group but with a much smaller unit cell volume for the latter. While their structural framework based on P2O74- is similar, the ζ-polymorph presents a fully disordered Li/Zn sublattice, while it is fully ordered for the α-polymorph. Furthermore, the bond valence energy landscape calculations show that in the α-polymorph, the Li+ conduction is two-dimensional, whereas because of Li+/Zn2+ site mixing, Li+ can hop three-dimensionally in the ζ-polymorph.

18.
Small ; 14(21): e1704396, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29667302

RESUMO

Voltage-driven manipulation of magnetism in electrodeposited 200 nm thick nanoporous single-phase solid solution Cu20 Ni80 (at%) alloy films (with sub 10 nm pore size) is accomplished by controlled reduction-oxidation (i.e., redox) processes in a protic solvent, namely 1 m NaOH aqueous solution. Owing to the selectivity of the electrochemical processes, the oxidation of the CuNi film mainly occurs on the Cu counterpart of the solid solution, resulting in a Ni-enriched alloy. As a consequence, the magnetic moment at saturation significantly increases (up to 33% enhancement with respect to the as-prepared sample), while only slight changes in coercivity are observed. Conversely, the reduction process brings Cu back to its metallic state and, remarkably, it becomes alloyed to Ni again. The reported phenomenon is fully reversible, thus allowing for the precise adjustment of the magnetic properties of this system through the sign and amplitude of the applied voltage.

19.
Inorg Chem ; 57(20): 12827-12835, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30256100

RESUMO

It has recently been reported that the ordered aeschynite-type polar ( Pna21) magnets RFeWO6 (R = Eu, Tb, Dy, Y) exhibit type II multiferroic properties below TN ∼ 15-18 K. Herein, we report a comprehensive investigation of the isostructural oxide DyCrWO6 and compare the results with those of DyFeWO6. The cation-ordered oxide DyCrWO6 crystallizes in the same polar orthorhombic structure and undergoes antiferromagnetic ordering at TN = 25 K. Contrary to DyFeWO6, only a very weak dielectric anomaly and magnetodielectric effects are observed at the Néel temperature and, more importantly, there is no induced polarization at TN. Furthermore, analysis of the low-temperature neutron diffraction data reveals a collinear arrangement of Cr spins but a noncollinear Dy-spin configuration due to single-ion anisotropy. We suggest that the collinear arrangement of Cr spins may be responsible for the absence of electric polarization in DyCrWO6. A temperature-induced magnetization reversal and magnetocaloric effects are observed at low temperatures.

20.
Inorg Chem ; 57(21): 13115-13127, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30351065

RESUMO

Ca9R(VO4)7 (R = rare earth) multicomponent oxides of a whitlockite-related structure are under consideration for applications in optoelectronics. In this work, the Czochralski-grown Ca9R(VO4)7 crystals were investigated as a function of pressure by powder X-ray diffraction and single-crystal Raman spectroscopy. The diffraction experiments were performed at the ALBA synchrotron under pressures ranging up to 9.22(5), 10.7(1), and 8.55(5) GPa for R = La, Nd, and Gd, respectively, to determine the third order equation of state (EOS) parameters. Fitting of the Birch-Murnaghan EOS provided the isothermal bulk moduli K0 = 63(4), 63(2), and 61(5) GPa for these three orthovanadates. These values are apparently lower than that reported for structurally related tricalcium vanadate Ca3(VO4)2. The compressibility anisotropy was observed; the lattice is markedly stiffer in [001] than in [100] direction. For Ca9Nd(VO4)7, the variation of the diffractograms just above 10 GPa provides an indication on the beginning of amorphization process; during pressure release the whitlockite-like structure is recovered. Raman spectroscopy measurements for single crystals of the above-mentioned rare-earth vanadates and Ca9Y(VO4)7 were performed (the maximum pressures achieved were 16.3(1), 21.2(1), 15.3(1), and 18.6(1) GPa for R = Y, La, Nd, and Gd, respectively). These measurements reveal a partially reversible phase transition interpreted as amorphization, with an onset at the pressure of ∼9-10 GPa, characterized by broadening of the peaks and their shift to lower energies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa