Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Sci Rep ; 14(1): 12148, 2024 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802532

RESUMO

MPS III is an autosomal recessive lysosomal storage disease caused mainly by missense variants in the NAGLU, GNS, HGSNAT, and SGSH genes. The pathogenicity interpretation of missense variants is still challenging. We aimed to develop unsupervised clustering-based pathogenicity predictor scores using extracted features from eight in silico predictors to predict the impact of novel missense variants of Sanfilippo syndrome. The model was trained on a dataset consisting of 415 uncertain significant (VUS) missense NAGLU variants. Performance The SanfilippoPred tool was evaluated by validation and test datasets consisting of 197-labelled NAGLU missense variants, and its performance was compared versus individual pathogenicity predictors using receiver operating characteristic (ROC) analysis. Moreover, we tested the SanfilippoPred tool using extra-labelled 427 missense variants to assess its specificity and sensitivity threshold. Application of the trained machine learning (ML) model on the test dataset of labelled NAGLU missense variants showed that SanfilippoPred has an accuracy of 0.93 (0.86-0.97 at CI 95%), sensitivity of 0.93, and specificity of 0.92. The comparative performance of the SanfilippoPred showed better performance (AUC = 0.908) than the individual predictors SIFT (AUC = 0.756), Polyphen-2 (AUC = 0.788), CADD (AUC = 0.568), REVEL (AUC = 0.548), MetaLR (AUC = 0.751), and AlphMissense (AUC = 0.885). Using high-confidence labelled NAGLU variants, showed that SanfilippoPred has an 85.7% sensitivity threshold. The poor correlation between the Sanfilippo syndrome phenotype and genotype represents a demand for a new tool to classify its missense variants. This study provides a significant tool for preventing the misinterpretation of missense variants of the Sanfilippo syndrome-relevant genes. Finally, it seems that ML-based pathogenicity predictors and Sanfilippo syndrome-specific prediction tools could be feasible and efficient pathogenicity predictors in the future.


Assuntos
Teorema de Bayes , Mucopolissacaridose III , Mutação de Sentido Incorreto , Mucopolissacaridose III/genética , Humanos , Aprendizado de Máquina , Curva ROC , Biologia Computacional/métodos , Distribuição Normal
3.
J Taibah Univ Med Sci ; 18(6): 1244-1253, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37250809

RESUMO

Objectives: Conotruncal heart defects (CTDs) are highly heritable, and approximately one-third of all congenital heart defects are due to CTDs. Through post-analysis of GWAS data relevant to CTDs, a new putative signal transduction pathway, called Vars2-Pic3ca-Akt, associated with CTD has been hypothesized. Here, we aimed to validate the Vars2-Pic3ca-Akt pathway experimentally by measuring Vars2 and PIP3 in patients with CTDs and controls, and to construct a PIP3 inhibitor, as one of harmful-relevant CTD pathogenesis, through an Akt-based drug design strategy. Methods: rs2517582 genotype and relative Vars2 expression in 207 individuals were determined by DNA sequencing and qPCR respectively, and free plasma PIP3 in 190 individuals was quantified through ELISA. An Akt-pharmacophore feature model was used to discover PIP3 antagonists with multiple computational and drug-like estimation tools. Results: CTD pathogenesis due to Vars2-Pic3ca-Akt overstimulation was confirmed by elevated Vars2 and PIP3 in patients with CTDs. We identified a new small molecule, 322PESB, that antagonizes PIP3 binding. This molecule was prioritized via virtual screening of 21 hypothetical small molecules and it showed minimal RMSD change, high binding affinity andlower dissociation constant than PIP3-Akt complex by 1.99 Kcal/Mol, thus resulting in an equilibrium shift toward 322PESB-Akt complex formation. Moreover, 322PESB exhibited acceptable pharmacokinetics and drug likeness features according to ADME and Lipinski's rule of five classifiers. This compound is the first potential drug-like molecule reported for patients with CTDs with elevated PIP3. Conclusion: PIP3 is a useful diagnostic biomarker for patients with CTDs. The Akt-pharmacophore feature model is a feasible approach for discovery of PIP3 signalling antagonists. Further 322PESB development and testing are recommended.

4.
Mol Neurobiol ; 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153683

RESUMO

Several neurological disorders, neurodevelopmental disorders, and neurodegenerative disorders have a genetic element with various clinical presentations ranging from mild to severe presentation. Neurological disorders are rare multifactorial disorders characterized by dysfunction and degeneration of synapses, neurons, and glial cells which are essential for movement, coordination, muscle strength, sensation, and cognition. The cerebellum might be involved at any time, either during development and maturation or later in life. Herein, we describe a spectrum of NDDs and NDs in seven patients from six Egyptian families. The core clinical and radiological features of our patients included dysmorphic features, neurodevelopmental delay or regression, gait abnormalities, skeletal deformities, visual impairment, seizures, and cerebellar atrophy. Previously unreported clinical phenotypic findings were recorded. Whole-exome sequencing (WES) was performed followed by an in silico analysis of the detected genetic variants' effect on the protein structure. Three novel variants were identified in three genes MFSD8, AGTPBP1, and APTX, and other previously reported three variants have been detected in "TPP1, AGTPBP1, and PCDHGC4" genes. In this cohort, we described the detailed unique phenotypic characteristics given the identified genetic profile in patients with neurological "neurodevelopmental disorders and neurodegenerative disorders" disorders associated with cerebellar atrophy, hence expanding the mutational spectrum of such disorders.

5.
J Genet Eng Biotechnol ; 20(1): 44, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35275316

RESUMO

BACKGROUND: Methyl CpG binding protein 2 (MeCP2) is essential for the normal function of mature neurons. Mutations in the MECP2 gene are the main cause of Rett syndrome (RTT). Gene mutations have been identified throughout the gene and the mutation effect is mainly correlated with its type and location. METHODS: In this study, a series of in silico algorithms were applied for analyzing the functional consequences of 3 novel gene missense mutations (D121A, S359Y, and P403S) and a rarely reported one with suspicious effect (R133H) on RettBASE. Besides, a ROC curve analysis was performed to investigate the critical factors affecting variant pathogenicity. RESULTS: (1) The ROC curve analysis for a retrieved set of MeCP2 variants showed that physicochemical characters do not significantly affect variant pathogenicity; (2) PREM PDI tool revealed that both D121A and R133H mainly contribute to disease progression via reducing MeCP2 affinity to DNA; (3) GPS v5.0 software indicated that P403S may correlate with altered protein phosphorylation; however, no defective protein interaction has been already documented. (4) The applied computational algorithms failed to explore any informative pathogenic mechanism for the S359Y variant. CONCLUSION: The conducted approach might provide an efficient prediction model for the effect of MECP2 variants that are located in MBD and CTD.

6.
Egypt Heart J ; 74(1): 65, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36076093

RESUMO

BACKGROUND: Childhood dilated cardiomyopathy (CDCM) is the most common cardiomyopathy in children and it is risk factor to heart failure and sudden death. Most of the different etiologic factors which have been postulated to DCM are idiopathic, and its pathogenesis remains uncertain. So it was worth investigating the potential DCM pathogenicity models to establish early noninvasive diagnosis parameters especially in CDCM patients. Beside that miRNAs in the circulatory blood are genetically considered the best option for noninvasive diagnosis; also, implementation of miRNAs as early diagnostic markers for children with DCM is urgent because those children have high risk to sudden heart death. We aimed to identify discriminator diagnostic circulatory miRNA expression levels in CDCM patients. RESULTS: The expression levels of miR-454-3p and miR-194-5p were found significant upregulated (p value = 0.001 and 0.018; CI 95%, respectively), while miR-875-3p was found significant downregulated (p value = 0.040; CI 95%). A receiver operating characteristic (ROC) curve analysis showed significant AUC = 1.000 and 0.798 for miR-454-3p and miR-194-5p, respectively, and the optimal discriminated diagnostic cut-points were computed by index of union (IU) method. Enrichment analysis for the potential targeted mature mRNAs by miR-454-3p and miR-194-5p pointed that Ca, Na and K ions homeostasis in cardiac sarcolemma consider potential CDCM pathogenicity model. CONCLUSIONS: miR-454-3p and miR-194-5p are highly influencing noninvasive biomarkers for CDCM, and further circulatory miRNAs-implicated studies are highly recommended.

7.
J Genet Eng Biotechnol ; 20(1): 31, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190906

RESUMO

BACKGROUND: The B30.2 variants lead to most relevant severity forms of familial Mediterranean fever (FMF) manifestations. The B30.2 domain plays a key role in protein-protein interaction (PPI) of pyrin with other apoptosis proteins and in regulation the cascade of inflammatory reactions. Pyrin-casp1 interaction is mainly responsible for the dysregulation of the inflammatory responses in FMF. Lower binding affinity was observed between the mutant B30.2 pyrin and casp1 without the release of the complete pathogenicity mechanism. The aim of this study was to identify the possible effects of the interface pocked residues in B30.2/SPRY-Casp1/p20 complex using molecular mechanics simulation and in silico analysis. RESULTS: It was found that Lys671Met, Ser703Ile, and Ala744Ser variants led mainly to shift of the binding affinity (∆G), dissociation constant (Kd), and root mean square deviation (RMSD) in B30.2/SPRY-Casp1/p20 complex leading to dynamic disequilibrium of the p20-B30.2/SPRY complex toward its complex form. The current pathogenicity model and its predicted implementation in the relevant colchicine dosage were delineated. CONCLUSION: The molecular mechanics analysis of B30.2/SPRY-p20 complex harboring Lys671Met, Ser703Ile, and Ala744Ser variants showed dynamic disequilibrium of B30.2/SPRY-casp1/p20complex in context of the studied variants that could be a new computational model for FMF pathogenicity. This study also highlighted the specific biochemical markers that could be useful to adjust the colchicine dose in FMF patients.

8.
PLoS One ; 16(1): e0244567, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33439861

RESUMO

The Arab population encompasses over 420 million people characterized by genetic admixture and a consequent rich genetic diversity. A number of genetic diseases have been reported for the first time from the population. Additionally a high prevalence of some genetic diseases including autosomal recessive disorders such as hemoglobinopathies and familial mediterranean fever have been found in the population and across the region. There is a paucity of databases cataloguing genetic variants of clinical relevance from the population. The availability of such a catalog could have implications in precise diagnosis, genetic epidemiology and prevention of disease. To fill in the gap, we have compiled DALIA, a comprehensive compendium of genetic variants reported in literature and implicated in genetic diseases reported from the Arab population. The database aims to act as an effective resource for population-scale and sub-population specific variant analyses, enabling a ready reference aiding clinical interpretation of genetic variants, genetic epidemiology, as well as facilitating rapid screening and a quick reference for evaluating evidence on genetic diseases.


Assuntos
Alelos , Árabes/genética , Bases de Dados Genéticas , Febre Familiar do Mediterrâneo/genética , Frequência do Gene , Predisposição Genética para Doença , Variação Genética , Hemoglobinopatias/genética , Humanos
9.
Behav Brain Res ; 378: 112272, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31586564

RESUMO

Catechol-O-methyltransferase (COMT) enzyme has a major role in the adjustment of catechol-dependent functions, for example, cognition, cardiac function, and pain processing. The pathogenesis of autism may be related to dysfunction in the midbrain dopaminergic system. Therefore, we aimed to clarify how COMT gene variants affect dopamine level, and its potential impact on phenotype traits of autistic patients. 52 autistic patients were subjected to comprehensive clinical investigation, sequencing of exon 4 of the COMT gene by direct Sanger Sequencing, and measuring of dopamine levels. The clinical presentations of autistic subjects were correlated with detected COMT variants and dopamine level. Our molecular results revealed that three COMT variants were found: rs8192488 [C > T], rs4680 (Val158Met) and rs4818 [C > G]. Within autistic subjects, Val158Met rs4680 carriers were significantly distributed (71.2% P = 0.014) accompanied with abnormal dopamine, abnormal Electroencephalogram (EEG) and increasing the severity of autistic behaviour. As regards the haplotypes, CC/VM/CG block was significantly distributed among the autistic subjects (30.8%) presented with low mean dopamine level (15.8 ±â€¯4.7 pg/ml, p = 0.05), while CC/MM/CC were presented with high mean level (77.8 ±â€¯8.6 pg/ml, p = 0.05). Evidence is currently limited and preliminary, further studies are necessary in order to set up a coherent dopaminergic model of Autism Spectrum Disorder (ASD), which would further pave the way for an adequate treatment.


Assuntos
Transtorno do Espectro Autista/sangue , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Catecol O-Metiltransferase/genética , Dopamina/sangue , Adolescente , Criança , Pré-Escolar , Eletroencefalografia , Feminino , Humanos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Índice de Gravidade de Doença
10.
Pathol Oncol Res ; 25(2): 559-566, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30361904

RESUMO

MicroRNAs (miRNAs) trigger a two-layer regulatory network directly or through transcription factors and their co-regulators. Unlike miR-375, the role of miR-145 and miR-224 in inhibiting or driving cancer cell migration is controversial. This study is a step towards addressing the potential of miR-375, miR-145 and miR-224 expression modulation to inhibit colorectal carcinoma (CRC) cells migration in vitro through regulation of non-target genes VEGFA, TGFß1, IGF1, CD105 and CD44. Transwell migration assay results revealed a significant subdue of migration ability of cells transfected with miR-375 and miR-145 mimics and miR-224 inhibitor. Real time PCR data showed that expression of VEGFA, TGFß1, IGF1, CD105 and CD44 was downregulated as a consequence of exogenous re-expression of miR-375 and inhibition of miR-224. On the other hand, ectopic expression of miR-145 did not affect VEGFA, TGFß1 and CD44 expression, while it elevated CD105 and suppressed IGF1 expression. MAP4K4, a predicted target of miR-145, was validated as a target that could play a role in miR-145-mediated regulation of migration. At mRNA level, no change was observed in expression of MAP4K4 in cells with restored expression of miR-145, while western blotting analysis revealed a 25% reduction of protein level. By applying luciferase reporter assay, a significant decrease in luciferase activity was observed, supporting that miR-145 directly target 3' UTR of MAP4K4. The study highlighted the involvement of non-target genes VEGFA, TGFß1, IGF1, CD105 and CD44 in mediating anti- and pro-migratory effect of miR-375 and miR-224, respectively, and validated MAP4K4 as a direct target of anti-migratory miR-145.


Assuntos
Movimento Celular/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/genética , Células HCT116 , Humanos
11.
Appl Clin Genet ; 11: 81-87, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30050315

RESUMO

BACKGROUND: The microdeletion events that occur in the Y chromosome-azoospermia factor (AZF) region may lead to dyszoospermia. Also, the deleted azoospermia (DAZ) gene on AZFc and autosomal deleted azoospermia like gene (DAZL) are suggested to represent impairment, so it is interesting to determine the independency pattern of the AZF region and DAZL gene in azoospermic patients. AIM: To study the molecular characterization of AZFc and DAZL in 64 idiopathic non-obstructed azoospermia patients and 30 sexually reproductive men. METHODS: SYBR Green I (Q-PCR) and AZF-STS analysis was used for DAZ gene, and SNV-PCR and confirmative Sanger sequencing for DAZL gene. RESULTS: The present study observed that 15.6% had AZFc microdeletion, out of which 10% had DAZ1/2 deletion, and no T54A variant in the DAZL gene was found. CONCLUSION: In the current work, the novelty is that spermatogenic impairment phenotype, present with AZFc microdeletions, is independent of the T54A variant in the DAZL gene, and AZFc microdeletions could be a causative agent in spermatogenic impairment.

12.
Biomed Res Int ; 2015: 517815, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25984533

RESUMO

Sclerosteosis is a rare autosomal recessive condition characterized by increased bone density. Mutations in SOST gene coding for sclerostin are linked to sclerosteosis. Two Egyptian brothers with sclerosteosis and their apparently normal consanguineous parents were included in this study. Clinical evaluation and genomic sequencing of the SOST gene were performed followed by in silico analysis of the resulting variation. A novel homozygous frameshift mutation in the SOST gene, characterized as one nucleotide cytosine insertion that led to premature stop codon and loss of functional sclerostin, was identified in the two affected brothers. Their parents were heterozygous for the same mutation. To our knowledge this is the first Egyptian study of sclerosteosis and SOST gene causing mutation.


Assuntos
Proteínas Morfogenéticas Ósseas/genética , Marcadores Genéticos/genética , Hiperostose/genética , Mutação/genética , Sindactilia/genética , Proteínas Adaptadoras de Transdução de Sinal , Adolescente , Adulto , Sequência de Aminoácidos , Sequência de Bases , Proteínas Morfogenéticas Ósseas/química , Criança , Análise Mutacional de DNA , Egito , Família , Feminino , Humanos , Hiperostose/diagnóstico por imagem , Masculino , Modelos Genéticos , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Linhagem , Radiografia , Sindactilia/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa