Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Int Endod J ; 53(6): 812-823, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32053244

RESUMO

AIM: First, to determine the feasibility of using the low-density lipoprotein receptor knockout (LDLR KO) mouse model to study apical periodontitis (AP). Secondly, to investigate the causal relationship between AP and atherosclerosis. It was hypothesized that it would be feasible to induce AP and atherosclerosis in LDLR KO mice and find a difference in atherosclerosis between AP and Sham groups. METHODOLOGY: Using a published methodology, AP was induced in LDLR KO mice by exposing the dental pulp of the four first molars (Tx). Shams received only anaesthesia. Mice were fed a high fat, Western-type diet (WTD), to induce atherosclerosis. At 16 weeks, mice were euthanized and aortas collected to measure atherosclerosis lesion burden (oil red O staining). Periapical lesions were validated using micro-CT and histology. Systemic inflammation was measured using a cytokine array. RESULTS: Both groups developed a similar degree of atherosclerosis (mean lesion area 7.46 ± 0.44% in the Tx group compared with 7.65 ± 0.46%, in the Sham group, P = 0.77), and a similar degree of inflammation. Periapical lesions (PALs) in all four molars were only identified in a small subset of Tx mice. CONCLUSIONS: A novel mouse model, which combines AP and CVD, was created. This model allows investigation of the relationship between the two diseases, whilst avoiding other potential common confounders. Although no difference in the degree of atherosclerosis was found between the groups, more studies in which the number of periapical lesions, changes in systemic inflammation and the degree of atherosclerosis are correlated are necessary to ultimately determine the impact of AP on CVD.


Assuntos
Aterosclerose , Periodontite Periapical , Animais , Citocinas , Modelos Animais de Doenças , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
Int Endod J ; 50(9): 847-859, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27770442

RESUMO

A systematic review was conducted to assess the association between apical periodontitis (AP) and cardiovascular disease (CVD). Studies published from the earliest date available until September 2015 were retrieved from the Medline, PubMed and Embase databases. The included studies reported the results from observational studies and assessed the link between AP and CVD as confirmed by one of the following criteria: diagnosed coronary artery disease, angina pectoris, acute myocardial infarction, stroke or mortality caused by cardiac pathology. The study characteristics were abstracted by independent researchers following the PRISMA standard protocol. NOS criteria were used to rate the quality of the studies, and the GRADE was used for level of evidence evaluation. Nineteen epidemiological studies fulfilled the predetermined inclusion criteria: 10 case-control studies, five cross-sectional studies and four cohort studies. There was considerable heterogeneity amongst the included studies in terms of their study design, population, outcomes of interest and AP evaluation methods. Considering the limited availability and the heterogeneity amongst the studies, meta-analysis was not attempted. Thirteen of the 19 included studies found a significant positive association between apical periodontitis and cardiovascular disease, although in two of them, the significance was present only in univariate analysis. Five studies failed to reveal positive significance, and one study reported a negative association. In conclusion, although most of the published studies found a positive association between apical periodontitis and cardiovascular disease, the quality of the existing evidence is moderate-low and a causal relationship cannot be established.


Assuntos
Doenças Cardiovasculares/etiologia , Periodontite Periapical/complicações , Transtornos Cerebrovasculares/etiologia , Humanos
3.
Rev Endocr Metab Disord ; 15(1): 31-44, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24048715

RESUMO

Obesity is now recognised as a low grade, chronic inflammatory disease that is linked to a myriad of disorders including cancer, cardiovascular disease and type 2 diabetes (T2D). With respect to T2D, work in the last decade has revealed that cells of the immune system are recruited to white adipose tissue beds (WAT), where they can secrete cytokines to modulate metabolism within WAT. As many of these cytokines are known to impair insulin action, blocking the recruitment of immune cells has been purported to have therapeutic utility for the treatment of obesity-induced T2D. As inflammation is critical for host defence, and energy consuming in nature, the blockade of inflammatory processes may, however, result in unwanted complications. In this review, we outline the immunological changes that occur within the WAT with respect to systemic glucose homeostasis. In particular, we focus on the role of major immune cell types in regulating nutrient homeostasis and potential initiating stimuli for WAT inflammation.


Assuntos
Tecido Adiposo/metabolismo , Metabolismo dos Carboidratos/fisiologia , Glucose/metabolismo , Inflamação/metabolismo , Obesidade/metabolismo , Tecido Adiposo/patologia , Animais , Humanos , Inflamação/patologia , Obesidade/patologia
4.
iScience ; 27(2): 108800, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38292430

RESUMO

Alzheimer's disease (AD) is associated with both extracellular amyloid-ß (Aß) plaques and intracellular tau-containing neurofibrillary tangles (NFT). We characterized the behavioral, metabolic and lipidomic phenotype of the 5xFADxTg30 mouse model which contains overexpression of both Aß and tau. Our results independently reproduce several phenotypic traits described previously for this model, while providing additional characterization. This model develops many aspects associated with AD including frailty, decreased survival, initiation of aspects of cognitive decline and alterations to specific lipid classes and molecular lipid species in the plasma and brain. Notably, some sex-specific differences exist in this model and motor impairment with aging in this model does compromise the utility of the model for some movement-based behavioral assessments of cognitive function. These findings provide a reference for individuals interested in using this model to understand the pathology associated with elevated Aß and tau or for testing potential therapeutics for the treatment of AD.

5.
Diabetologia ; 56(7): 1638-48, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23620060

RESUMO

AIMS/HYPOTHESIS: While it is well known that diet-induced obesity causes insulin resistance, the precise mechanisms underpinning the initiation of insulin resistance are unclear. To determine factors that may cause insulin resistance, we have performed a detailed time-course study in mice fed a high-fat diet (HFD). METHODS: C57Bl/6 mice were fed chow or an HFD from 3 days to 16 weeks and glucose tolerance and tissue-specific insulin action were determined. Tissue lipid profiles were analysed by mass spectrometry and inflammatory markers were measured in adipose tissue, liver and skeletal muscle. RESULTS: Glucose intolerance developed within 3 days of the HFD and did not deteriorate further in the period to 12 weeks. Whole-body insulin resistance, measured by hyperinsulinaemic-euglycaemic clamp, was detected after 1 week of HFD and was due to hepatic insulin resistance. Adipose tissue was insulin resistant after 1 week, while skeletal muscle displayed insulin resistance at 3 weeks, coinciding with a defect in glucose disposal. Interestingly, no further deterioration in insulin sensitivity was observed in any tissue after this initial defect. Diacylglycerol content was increased in liver and muscle when insulin resistance first developed, while the onset of insulin resistance in adipose tissue was associated with increases in ceramide and sphingomyelin. Adipose tissue inflammation was only detected at 16 weeks of HFD and did not correlate with the induction of insulin resistance. CONCLUSIONS/INTERPRETATION: HFD-induced whole-body insulin resistance is initiated by impaired hepatic insulin action and exacerbated by skeletal muscle insulin resistance and is associated with the accumulation of specific bioactive lipid species.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina/fisiologia , Tecido Adiposo/metabolismo , Animais , Western Blotting , Composição Corporal/fisiologia , Ensaio de Imunoadsorção Enzimática , Técnica Clamp de Glucose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Diabetes Obes Metab ; 15 Suppl 3: 170-5, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24003934

RESUMO

Obesity and type 2 diabetes are now the most prevalent metabolic diseases in the Western world and the development of new strategies to treat these metabolic diseases is most warranted. Obesity results in a state of chronic low-grade inflammation in metabolically active tissues such as the liver, adipose tissue, brain and skeletal muscle. Work in our laboratory has focussed on the role of the cytokine interleukin-6 (IL)-6 and other IL-6-like cytokines that signal through the gp130 receptor complex. We have focussed on the role of blocking IL-6 trans-signalling to prevent inflammation on the one hand, and activating membrane-bound signalling to promote insulin sensitivity on the other hand. Since the cloning of the IL-6 gene nearly 30 years ago, a pattern has emerged associating IL-6 with a number of diseases associated with inflammation including rheumatoid arthritis (RA), Crohn's disease and several cancers. Accordingly, tocilizumab, an IL-6 receptor-inhibiting monoclonal antibody, is now useful for the treatment of RA. However, this may not be the most optimal strategy to block inflammation associated with IL-6 and may result in unwanted side effects that, paradoxically, could actually promote metabolic disease.


Assuntos
Receptor gp130 de Citocina/antagonistas & inibidores , Inflamação/prevenção & controle , Insulina/fisiologia , Terapia de Alvo Molecular , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Receptor gp130 de Citocina/imunologia , Humanos , Resistência à Insulina/fisiologia , Interleucina-6/fisiologia , Obesidade/complicações , Obesidade/metabolismo , Obesidade/terapia , Transdução de Sinais
7.
Diabetologia ; 55(10): 2769-2778, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22832498

RESUMO

AIMS/HYPOTHESIS: Although skeletal muscle insulin resistance has been associated with activation of c-Jun N-terminal kinase (JNK), whether increased JNK activity causes insulin resistance in this organ is not clear. In this study we examined the metabolic consequences of isolated JNK phosphorylation in muscle tissue. METHODS: Plasmids containing genes encoding a wild-type JNK1 (WT-JNK) or a JNK1/JNKK2 fusion protein (rendering JNK constitutively active; CA-Jnk) were electroporated into one tibialis anterior (TA) muscle of C57Bl/6 mice, with the contralateral TA injected with an empty vector (CON) to serve as a within-animal control. RESULTS: Overproduction of WT-JNK resulted in a modest (~25%) increase in phosphorylation (Thr(183)/Tyr(185)) of JNK, but no differences were observed in Ser(307) phosphorylation of insulin receptor substrate 1 (IRS-1) or total IRS-1 protein, nor in insulin-stimulated glucose clearance into the TA muscle when comparing WT-JNK with CON. By contrast, overexpression of CA-Jnk, which markedly increased the phosphorylation of CA-JNK, also increased serine phosphorylation of IRS-1, markedly decreased total IRS-1 protein, and decreased insulin-stimulated phosphorylation of the insulin receptor (Tyr(1361)) and phosphorylation of Akt at (Ser(473) and Thr(308)) compared with CON. Moreover, overexpression of CA-Jnk decreased insulin-stimulated glucose clearance into the TA muscle compared with CON and these effects were observed without changes in intramuscular lipid species. CONCLUSIONS/INTERPRETATION: Constitutive activation of JNK in skeletal muscle impairs insulin signalling at the level of IRS-1 and Akt, a process which results in the disruption of normal glucose clearance into the muscle.


Assuntos
Resistência à Insulina/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Músculo Esquelético/metabolismo , Animais , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo
8.
Diabetologia ; 54(4): 888-99, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21210076

RESUMO

AIMS/HYPOTHESIS: Recent work has identified the important roles of M1 pro-inflammatory and M2 anti-inflammatory macrophages in the regulation of insulin sensitivity. Specifically, increased numbers of M2 macrophages and a decrease in M1 macrophages within the adipose tissue are associated with a state of enhanced insulin sensitivity. IL-10 is an anti-inflammatory cytokine and is a critical effector molecule of M2 macrophages. METHODS: In the present study, we examined the contribution of haematopoietic-cell-derived IL-10 to the development of obesity-induced inflammation and insulin resistance. We hypothesised that haematopoietic-cell-restricted deletion of IL-10 would exacerbate obesity-induced inflammation and insulin resistance. Lethally irradiated wild-type recipient mice receiving bone marrow from either wild-type or Il10-knockout mice were placed on either a chow or a high-fat diet for a period of 12 weeks and assessed for alterations in body composition, tissue inflammation and glucose and insulin tolerance. RESULTS: Contrary to our hypothesis, neither inflammation, as measured by the activation of pro-inflammatory stress kinases and gene expression of several pro-inflammatory cytokines in the adipose tissue and liver, nor diet-induced obesity and insulin resistance were exacerbated by the deletion of haematopoietic-cell-derived IL-10. Interestingly, however, Il10 mRNA expression and IL-10 protein production in liver and/or adipose tissue were markedly elevated in Il10-knockout bone-marrow-transplanted mice relative to wild-type bone marrow-transplanted mice. CONCLUSIONS/INTERPRETATION: These data show that deletion of IL-10 from the haematopoietic system does not potentiate high-fat diet-induced inflammation or insulin resistance.


Assuntos
Gorduras na Dieta/efeitos adversos , Inflamação/metabolismo , Interleucina-10/deficiência , Animais , Composição Corporal/genética , Composição Corporal/fisiologia , Linhagem Celular , Teste de Tolerância a Glucose , Inflamação/induzido quimicamente , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Interleucina-10/genética , Interleucina-10/farmacologia , Interleucina-10/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase , Fator de Necrose Tumoral alfa/metabolismo
9.
Nat Med ; 6(1): 41-8, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10613822

RESUMO

Thrombospondin-1 (TSP-1) is a naturally occurring inhibitor of angiogenesis that limits vessel density in normal tissues and curtails tumor growth. Here, we show that the inhibition of angiogenesis in vitro and in vivo and the induction of apoptosis by thrombospondin-1 all required the sequential activation of CD36, p59fyn, caspase-3 like proteases and p38 mitogen-activated protein kinases. We also detected increased endothelial cell apoptosis in situ at the margins of tumors in mice treated with thrombospondin-1. These results indicate that thrombospondin-1, and possibly other broad-spectrum natural inhibitors of angiogenesis, act in vivo by inducing receptor-mediated apoptosis in activated microvascular endothelial cells.


Assuntos
Apoptose/fisiologia , Antígenos CD36/fisiologia , Endotélio Vascular/fisiologia , Melanoma Experimental/irrigação sanguínea , Neovascularização Patológica/fisiopatologia , Neovascularização Fisiológica/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Trombospondina 1/farmacologia , Angiostatinas , Animais , Apoptose/efeitos dos fármacos , Antígenos CD36/genética , Caspases/metabolismo , Endotélio Vascular/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Melanoma Experimental/patologia , Melanoma Experimental/secundário , Camundongos , Camundongos Knockout , Microcirculação , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neovascularização Patológica/prevenção & controle , Neovascularização Fisiológica/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Plasminogênio/farmacologia , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-fyn , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno
10.
Nat Commun ; 12(1): 2887, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001905

RESUMO

Obesity is a major risk factor underlying the development of metabolic disease and a growing public health concern globally. Strategies to promote skeletal muscle metabolism can be effective to limit the progression of metabolic disease. Here, we demonstrate that the levels of the Hippo pathway transcriptional co-activator YAP are decreased in muscle biopsies from obese, insulin-resistant humans and mice. Targeted disruption of Yap in adult skeletal muscle resulted in incomplete oxidation of fatty acids and lipotoxicity. Integrated 'omics analysis from isolated adult muscle nuclei revealed that Yap regulates a transcriptional profile associated with metabolic substrate utilisation. In line with these findings, increasing Yap abundance in the striated muscle of obese (db/db) mice enhanced energy expenditure and attenuated adiposity. Our results demonstrate a vital role for Yap as a mediator of skeletal muscle metabolism. Strategies to enhance Yap activity in skeletal muscle warrant consideration as part of comprehensive approaches to treat metabolic disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Adiposidade/genética , Ácidos Graxos/metabolismo , Doenças Metabólicas/genética , Músculo Esquelético/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Regulação da Expressão Gênica , Resistência à Insulina/genética , Masculino , Doenças Metabólicas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Oxirredução , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Proteínas de Sinalização YAP
12.
Diabetologia ; 53(11): 2431-41, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20697689

RESUMO

AIMS/HYPOTHESIS: The role of IL-6 in the development of obesity and hepatic insulin resistance is unclear and still the subject of controversy. We aimed to determine whether global deletion of Il6 in mice (Il6 (-/-)) results in standard chow-induced and high-fat diet (HFD)-induced obesity, hepatosteatosis, inflammation and insulin resistance. METHODS: Male, 8-week-old Il6 (-/-) and littermate control mice were fed a standard chow or HFD for 12 weeks and phenotyped accordingly. RESULTS: Il6 (-/-) mice displayed obesity, hepatosteatosis, liver inflammation and insulin resistance when compared with control mice on a standard chow diet. When fed a HFD, the Il6 (-/-) and control mice had marked, equivalent gains in body weight, fat mass and ectopic lipid deposition in the liver relative to chow-fed animals. Despite this normalisation, the greater liver inflammation, damage and insulin resistance observed in chow-fed Il6 (-/-) mice relative to control persisted when both were fed the HFD. Microarray analysis from livers of mice fed a HFD revealed that genes associated with oxidative phosphorylation, the electron transport chain and tricarboxylic acid cycle were uniformly decreased in Il6 (-/-) relative to control mice. This coincided with reduced maximal activity of the mitochondrial enzyme ß-hydroxyacyl-CoA-dehydrogenase and decreased levels of mitochondrial respiratory chain proteins. CONCLUSIONS/INTERPRETATION: Our data suggest that IL-6 deficiency exacerbates HFD-induced hepatic insulin resistance and inflammation, a process that appears to be related to defects in mitochondrial metabolism.


Assuntos
Inflamação/genética , Resistência à Insulina/genética , Interleucina-6/deficiência , Fígado/patologia , Adipócitos/metabolismo , Adipócitos/patologia , Adiposidade/genética , Animais , Composição Corporal/genética , Calorimetria Indireta , Tamanho Celular , Diglicerídeos/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Feminino , Interleucina-6/genética , Fígado/imunologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Triglicerídeos/metabolismo
13.
Diabetologia ; 52(7): 1409-18, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19387610

RESUMO

AIMS/HYPOTHESIS: Brain-derived neurotrophic factor (BDNF) is produced in skeletal muscle, but its functional significance is unknown. We aimed to determine the signalling processes and metabolic actions of BDNF. METHODS: We first examined whether exercise induced BDNF expression in humans. Next, C2C12 skeletal muscle cells were electrically stimulated to mimic contraction. L6 myotubes and isolated rat extensor digitorum longus muscles were treated with BDNF and phosphorylation of the proteins AMP-activated protein kinase (AMPK) (Thr(172)) and acetyl coenzyme A carboxylase beta (ACCbeta) (Ser(79)) were analysed, as was fatty acid oxidation (FAO). Finally, we electroporated a Bdnf vector into the tibialis cranialis muscle of mice. RESULTS: BDNF mRNA and protein expression were increased in human skeletal muscle after exercise, but muscle-derived BDNF appeared not to be released into the circulation. Bdnf mRNA and protein expression was increased in muscle cells that were electrically stimulated. BDNF increased phosphorylation of AMPK and ACCbeta and enhanced FAO both in vitro and ex vivo. The effect of BDNF on FAO was AMPK-dependent, since the increase in FAO was abrogated in cells infected with an AMPK dominant negative adenovirus or treated with Compound C, an inhibitor of AMPK. Electroporation of a Bdnf expression vector into the tibialis cranialis muscle resulted in increased BDNF protein production and tropomyosin-related kinase B (TrkB(Tyr706/707)) and extracellular signal-regulated protein kinase (p44/42 Thr(202)/Tyr(204)) phosphorylation in these muscles. In addition, phosphorylation of ACCbeta was markedly elevated in the Bdnf electroporated muscles. CONCLUSIONS/INTERPRETATION: These data identify BDNF as a contraction-inducible protein in skeletal muscle that is capable of enhancing lipid oxidation in skeletal muscle via activation of AMPK.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Metabolismo dos Lipídeos/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Acetil-CoA Carboxilase/metabolismo , Animais , Linhagem Celular , Teste de Esforço , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Gorduras/metabolismo , Expressão Gênica/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/citologia , Oxirredução , Fosforilação/fisiologia , Ratos , Receptor trkB/metabolismo , Transdução de Sinais/fisiologia
14.
J Physiol ; 587(Pt 7): 1593-605, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19204053

RESUMO

Excess lipid accumulation resulting from an elevated supply of plasma fatty acids is linked to the pathogenesis of the metabolic syndrome and heart disease. The term 'lipotoxicity' was coined to describe how lipid accumulation leads to cellular dysfunction and death in non-adipose tissues including the heart, pancreas and liver. While lipotoxicity has been shown in cultured skeletal muscle cells, the degree of lipotoxicity in vivo and the functional consequences are unresolved. We studied three models of fatty acid overload in male mice: 5 h Intralipid((R)) and heparin infusion, prolonged high fat feeding (HFF) and genetic obesity induced by leptin deficiency (ob/ob mice). Markers of apoptosis, proteolysis and autophagy were assessed as readouts of lipotoxicity. The Intralipid((R)) infusion increased caspase 3 activity in skeletal muscle, demonstrating that enhancing fatty acid flux activates pro-apoptotic pathways. HFF and genetic obesity increased tissue lipid content but did not influence apoptosis. Gene array analysis revealed that HFF reduced the expression of 31 pro-apoptotic genes. Markers of autophagy (LC3beta and beclin-1 expression) were unaffected by HFF and were associated with enhanced Bcl(2) protein expression. Proteolytic activity was similarly unaffected by HFF or in ob/ob mice. Thus, contrary to our previous findings in muscle culture in vitro and in other non-adipose tissues in vivo, lipid overload did not induce apoptosis, autophagy or proteolysis in skeletal muscle. A broad transcriptional suppression of pro-apoptotic proteins may explain this resistance to lipid-induced cell death in skeletal muscle.


Assuntos
Gorduras na Dieta/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/genética , Caspase 3/metabolismo , Gorduras na Dieta/administração & dosagem , Modelos Animais de Doenças , Regulação para Baixo , Emulsões Gordurosas Intravenosas/metabolismo , Ácidos Graxos não Esterificados/sangue , Perfilação da Expressão Gênica/métodos , Hipertrofia , Leptina/deficiência , Leptina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Obesidade/genética , Obesidade/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Tempo , Transcrição Gênica
15.
Mol Metab ; 10: 66-73, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29478918

RESUMO

OBJECTIVES: Type 2 diabetes (T2D) is associated with chronic, low grade inflammation. Activation of the NLRP3 inflammasome and secretion of its target interleukin-1ß (IL-1ß) have been implicated in pancreatic ß cell failure in T2D. Specific targeting of the NLRP3 inflammasome to prevent pancreatic ß cell death could allow for selective T2D treatment without compromising all IL-1ß-associated immune responses. We hypothesized that treating a mouse model of T2D with MCC950, a compound that specifically inhibits NLRP3, would prevent pancreatic ß cell death, thereby preventing the onset of T2D. METHODS: Diabetic db/db mice were treated with MCC950 via drinking water for 8 weeks from 6 to 14 weeks of age, a period over which they developed pancreatic ß cell failure. We assessed metabolic parameters such as body composition, glucose tolerance, or insulin secretion over the course of the intervention. RESULTS: MCC950 was a potent inhibitor of NLRP3-induced IL-1ß in vitro and was detected at high levels in the plasma of treated db/db mice. Treatment of pre-diabetic db/db mice with MCC950, however, did not prevent pancreatic dysfunction and full onset of the T2D pathology. When examining the NLRP3 pathway in the pancreas of db/db mice, we could not detect an activation of this pathway nor increased levels of its target IL-1ß. CONCLUSIONS: NLRP3 driven-pancreatic IL-1ß inflammation does not play a key role in the pathogenesis of the db/db murine model of T2D.


Assuntos
Anti-Inflamatórios/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Células Secretoras de Insulina/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Animais , Anti-Inflamatórios/farmacologia , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Furanos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Hipoglicemiantes/farmacologia , Indenos , Células Secretoras de Insulina/efeitos dos fármacos , Interleucina-1beta/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sulfonamidas , Sulfonas/farmacologia , Sulfonas/uso terapêutico
16.
J Clin Invest ; 107(1): 45-52, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11134179

RESUMO

Angiogenesis is critical for the growth and proliferation of tumors as well as for normal development. We now describe a novel role for histidine-rich glycoprotein (HRGP) in the modulation of angiogenesis. HRGP is a plasma protein that circulates in relatively high concentrations (1.5 microM), but has no known function in vivo. We have shown previously that HRGP binds with high affinity to thrombospondin-1 (TSP-1), a homotrimeric glycoprotein that is a potent inhibitor of angiogenesis. The antiangiogenic activity of TSP-1 is mediated by the binding of properdin-like type I repeats to the receptor CD36. We found that binding of HRGP to TSP-1 was similarly mediated by TSP type I repeats. HRGP colocalized with TSP-1 in the stroma of human breast cancer specimens, and this interaction masked the antiangiogenic epitope of TSP-1. In assays performed in vitro of endothelial cell migration and tube formation, and in vivo corneal angiogenesis assays, HRGP inhibited the antiangiogenic effect of TSP-1. These studies suggest that HRGP can modulate the antiangiogenic activity of TSP-1, and identify a potential mechanism of resistance to the antiangiogenic effect of TSP-1.


Assuntos
Glicoproteínas/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas/farmacologia , Trombospondina 1/antagonistas & inibidores , Trombospondina 1/farmacologia , Sequência de Aminoácidos , Sítios de Ligação/genética , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/etiologia , Neoplasias da Mama/metabolismo , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Feminino , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Técnicas In Vitro , Modelos Biológicos , Dados de Sequência Molecular , Neovascularização Patológica , Proteínas/genética , Proteínas/metabolismo , Sequências Repetitivas de Aminoácidos , Homologia de Sequência de Aminoácidos , Trombospondina 1/genética , Trombospondina 1/metabolismo
17.
J Clin Invest ; 105(8): 1049-56, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10772649

RESUMO

Macrophage scavenger receptors have been implicated as key players in the pathogenesis of atherosclerosis. To assess the role of the class B scavenger receptor CD36 in atherogenesis, we crossed a CD36-null strain with the atherogenic apo E-null strain and quantified lesion development. There was a 76.5% decrease in aortic tree lesion area (Western diet) and a 45% decrease in aortic sinus lesion area (normal chow) in the CD36-apo E double-null mice when compared with controls, despite alterations in lipoprotein profiles that often correlate with increased atherogenicity. Macrophages derived from CD36-apo E double-null mice bound and internalized more than 60% less copper-oxidized LDL and LDL modified by monocyte-generated reactive nitrogen species. A similar inhibition of in vitro lipid accumulation and foam cell formation after exposure to these ligands was seen. These results support a major role for CD36 in atherosclerotic lesion development in vivo and suggest that blockade of CD36 can be protective even in more extreme proatherogenic circumstances.


Assuntos
Arteriosclerose/prevenção & controle , Antígenos CD36/fisiologia , Receptores Imunológicos/fisiologia , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/fisiologia , Arteriosclerose/etiologia , Antígenos CD36/genética , Células Cultivadas , Colesterol/sangue , Feminino , Lipoproteínas LDL/metabolismo , Macrófagos Peritoneais/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/genética , Receptores Depuradores , Triglicerídeos/sangue , Aumento de Peso
18.
J Clin Invest ; 105(8): 1095-108, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10772654

RESUMO

The oxidative conversion of LDL into an atherogenic form is considered a pivotal event in the development of cardiovascular disease. Recent studies have identified reactive nitrogen species generated by monocytes by way of the myeloperoxidase-hydrogen peroxide-nitrite (MPO-H(2)O(2)-NO(2)(-)) system as a novel mechanism for converting LDL into a high-uptake form (NO(2)-LDL) for macrophages. We now identify the scavenger receptor CD36 as the major receptor responsible for high-affinity and saturable cellular recognition of NO(2)-LDL by murine and human macrophages. Using cells stably transfected with CD36, CD36-specific blocking mAbs, and CD36-null macrophages, we demonstrated CD36-dependent binding, cholesterol loading, and macrophage foam cell formation after exposure to NO(2)-LDL. Modification of LDL by the MPO-H(2)O(2)-NO(2)(-) system in the presence of up to 80% lipoprotein-deficient serum (LPDS) still resulted in the conversion of the lipoprotein into a high-uptake form for macrophages, whereas addition of less than 5% LPDS totally blocked Cu(2+)-catalyzed LDL oxidation and conversion into a ligand for CD36. Competition studies demonstrated that lipid oxidation products derived from 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine can serve as essential moieties on NO(2)-LDL recognized by CD36. Collectively, these results suggest that MPO-dependent conversion of LDL into a ligand for CD36 is a likely pathway for generating foam cells in vivo. MPO secreted from activated phagocytes may also tag phospholipid-containing targets for removal by CD36-positive cells.


Assuntos
Antígenos CD36/metabolismo , Lipoproteínas LDL/metabolismo , Monócitos/metabolismo , Dióxido de Nitrogênio/metabolismo , Receptores Imunológicos/metabolismo , Receptores de LDL/metabolismo , Animais , Células CHO , Linhagem Celular , Cricetinae , Glucose Oxidase/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Peroxidase/metabolismo , Receptores Depuradores , Fatores de Tempo
19.
J Appl Physiol (1985) ; 103(4): 1227-33, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17656631

RESUMO

The exponential rise in blood lactate with exercise intensity may be influenced by hepatic lactate uptake. We compared muscle-derived lactate to the hepatic elimination during 2 h prolonged cycling (62 +/- 4% of maximal O(2) uptake, (.)Vo(2max)) followed by incremental exercise in seven healthy men. Hepatic blood flow was assessed by indocyanine green dye elimination and leg blood flow by thermodilution. During prolonged exercise, the hepatic glucose output was lower than the leg glucose uptake (3.8 +/- 0.5 vs. 6.5 +/- 0.6 mmol/min; mean +/- SE) and at an arterial lactate of 2.0 +/- 0.2 mM, the leg lactate output of 3.0 +/- 1.8 mmol/min was about fourfold higher than the hepatic lactate uptake (0.7 +/- 0.3 mmol/min). During incremental exercise, the hepatic glucose output was about one-third of the leg glucose uptake (2.0 +/- 0.4 vs. 6.2 +/- 1.3 mmol/min) and the arterial lactate reached 6.0 +/- 1.1 mM because the leg lactate output of 8.9 +/- 2.7 mmol/min was markedly higher than the lactate taken up by the liver (1.1 +/- 0.6 mmol/min). Compared with prolonged exercise, the hepatic lactate uptake increased during incremental exercise, but the relative hepatic lactate uptake decreased to about one-tenth of the lactate released by the legs. This drop in relative hepatic lactate extraction may contribute to the increase in arterial lactate during intense exercise.


Assuntos
Exercício Físico/fisiologia , Ácido Láctico/metabolismo , Fígado/metabolismo , Músculo Esquelético/metabolismo , Adulto , Gasometria , Teste de Esforço , Glucose/metabolismo , Hemodinâmica/fisiologia , Humanos , Perna (Membro)/irrigação sanguínea , Fígado/irrigação sanguínea , Masculino , Consumo de Oxigênio/fisiologia , Fluxo Sanguíneo Regional/fisiologia
20.
Circ Res ; 90(8): 844-9, 2002 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-11988484

RESUMO

Growth hormone-releasing peptides (GHRPs) are known as potent growth hormone secretagogues whose actions are mediated by the ghrelin receptor, a G protein-coupled receptor cloned from pituitary libraries. Hexarelin, a hexapeptide of the GHRP family, has reported cardiovascular activity. To identify the molecular target mediating this activity, rat cardiac membranes were labeled with a radioactive photoactivatable derivative of hexarelin and purified using lectin affinity chromatography and preparative gel electrophoresis. A binding protein of M(r) 84 000 was identified. The N-terminal sequence determination of the deglycosylated protein was identical to rat CD36, a multifunctional glycoprotein, which was expressed in cardiomyocytes and microvascular endothelial cells. Activation of CD36 in perfused hearts by hexarelin was shown to elicit an increase in coronary perfusion pressure in a dose-dependent manner. This effect was lacking in hearts from CD36-null mice and hearts from spontaneous hypertensive rats genetically deficient in CD36. The coronary vasoconstrictive response correlated with expression of CD36 as assessed by immunoblotting and covalent binding with hexarelin. These data suggest that CD36 may mediate the coronary vasospasm seen in hypercholesterolemia and atherosclerosis.


Assuntos
Antígenos CD36/fisiologia , Coração/fisiologia , Oligopeptídeos/farmacologia , Vasoconstritores/farmacologia , Animais , Sítios de Ligação , Antígenos CD36/genética , Antígenos CD36/isolamento & purificação , Membrana Celular/química , Coração/efeitos dos fármacos , Immunoblotting , Camundongos , Camundongos Knockout , Miocárdio/química , Oligopeptídeos/metabolismo , Técnicas de Cultura de Órgãos , Marcadores de Fotoafinidade/química , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Receptores de Neuropeptídeos/isolamento & purificação , Receptores de Hormônios Reguladores de Hormônio Hipofisário/isolamento & purificação , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa