Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 40(9): 2143-2158, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32640903

RESUMO

OBJECTIVE: ERα (estrogen receptor alpha) exerts nuclear genomic actions and also rapid membrane-initiated steroid signaling. The mutation of the cysteine 451 into alanine in vivo has recently revealed the key role of this ERα palmitoylation site on some vasculoprotective actions of 17ß-estradiol (E2) and fertility. Here, we studied the in vivo role of the arginine 260 of ERα which has also been described to be involved in its E2-induced rapid signaling with PI-3K (phosphoinositide 3-kinase) as well as G protein in cultured cell lines. Approach and Results: We generated a mouse model harboring a point mutation of the murine counterpart of this arginine into alanine (R264A-ERα). In contrast to the C451A-ERα, the R264A-ERα females are fertile with standard hormonal serum levels and normal control of hypothalamus-pituitary ovarian axis. Although R264A-ERα protein abundance was normal, the well-described membrane ERα-dependent actions of estradiol, such as the rapid dilation of mesenteric arteries and the acceleration of endothelial repair of carotid, were abrogated in R264A-ERα mice. In striking contrast, E2-regulated gene expression was highly preserved in the uterus and the aorta, revealing intact nuclear/genomic actions in response to E2. Consistently, 2 recognized nuclear ERα-dependent actions of E2, namely atheroma prevention and flow-mediated arterial remodeling were totally preserved. CONCLUSIONS: These data underline the exquisite role of arginine 264 of ERα for endothelial membrane-initiated steroid signaling effects of E2 but not for nuclear/genomic actions. This provides the first model of fertile mouse with no overt endocrine abnormalities with specific loss-of-function of rapid ERα signaling in vascular functions.


Assuntos
Lesões das Artérias Carótidas/tratamento farmacológico , Endotélio Vascular/efeitos dos fármacos , Estradiol/farmacologia , Receptor alfa de Estrogênio/agonistas , Terapia de Reposição de Estrogênios , Estrogênios/farmacologia , Fertilidade/efeitos dos fármacos , Artérias Mesentéricas/efeitos dos fármacos , Mutação Puntual , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/fisiopatologia , Proliferação de Células/efeitos dos fármacos , Endotélio Vascular/lesões , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Ativação Enzimática , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Ciclo Estral/efeitos dos fármacos , Feminino , Masculino , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III/metabolismo , Ovariectomia , Reepitelização/efeitos dos fármacos , Transdução de Sinais , Fatores de Tempo , Útero/efeitos dos fármacos , Útero/metabolismo , Remodelação Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
2.
Theranostics ; 14(1): 249-264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164151

RESUMO

Rationale: 17ß-estradiol (E2) can directly promote the growth of ERα-negative cancer cells through activation of endothelial ERα in the tumor microenvironment, thereby increasing a normalized tumor angiogenesis. ERα acts as a transcription factor through its nuclear transcriptional AF-1 and AF-2 transactivation functions, but membrane ERα plays also an important role in endothelium. The present study aims to decipher the respective roles of these two pathways in ERα-negative tumor growth. Moreover, we delineate the actions of tamoxifen, a Selective Estrogen Receptor Modulator (SERM) in ERα-negative tumors growth and angiogenesis, since we recently demonstrated that tamoxifen impacts vasculature functions through complex modulation of ERα activity. Methods: ERα-negative B16K1 cancer cells were grafted into immunocompetent mice mutated for ERα-subfunctions and tumor growths were analyzed in these different models in response to E2 and/or tamoxifen treatment. Furthermore, RNA sequencings were analyzed in endothelial cells in response to these different treatments and validated by RT-qPCR and western blot. Results: We demonstrate that both nuclear and membrane ERα actions are required for the pro-tumoral effects of E2, while tamoxifen totally abrogates the E2-induced in vivo tumor growth, through inhibition of angiogenesis but promotion of vessel normalization. RNA sequencing indicates that tamoxifen inhibits the E2-induced genes, but also initiates a specific transcriptional program that especially regulates angiogenic genes and differentially regulates glycolysis, oxidative phosphorylation and inflammatory responses in endothelial cells. Conclusion: These findings provide evidence that tamoxifen specifically inhibits angiogenesis through a reprogramming of endothelial gene expression via regulation of some transcription factors, that could open new promising strategies to manage cancer therapies affecting the tumor microenvironment of ERα-negative tumors.


Assuntos
Neoplasias , Tamoxifeno , Camundongos , Animais , Tamoxifeno/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Células Endoteliais/metabolismo , Angiogênese , Expressão Gênica , Endotélio/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral/genética
3.
Cells ; 12(4)2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36831287

RESUMO

Estrogens, mainly 17ß-estradiol (E2), play a critical role in reproductive organogenesis, ovulation, and fertility via estrogen receptors. E2 is also a well-known regulator of utero-placental vascular development and blood-flow dynamics throughout gestation. Mouse and human placentas possess strikingly different morphological configurations that confer important reproductive advantages. However, the functional interplay between fetal and maternal vasculature remains similar in both species. In this review, we briefly describe the structural and functional characteristics, as well as the development, of mouse and human placentas. In addition, we summarize the current knowledge regarding estrogen actions during utero-placental vascular morphogenesis, which includes uterine angiogenesis, the control of trophoblast behavior, spiral artery remodeling, and hemodynamic adaptation throughout pregnancy, in both mice and humans. Finally, the estrogens that are present in abnormal placentation are also mentioned. Overall, this review highlights the importance of the actions of estrogens in the physiology and pathophysiology of placental vascular development.


Assuntos
Estrogênios , Placenta , Humanos , Gravidez , Feminino , Placenta/irrigação sanguínea , Placentação , Artérias , Morfogênese
4.
JCI Insight ; 8(5)2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36729672

RESUMO

The main estrogen, 17ß-estradiol (E2), exerts several beneficial vascular actions through estrogen receptor α (ERα) in endothelial cells. However, the impact of other natural estrogens such as estriol (E3) and estetrol (E4) on arteries remains poorly described. In the present study, we report the effects of E3 and E4 on endothelial healing after carotid artery injuries in vivo. After endovascular injury, which preserves smooth muscle cells (SMCs), E2, E3, and E4 equally stimulated reendothelialization. By contrast, only E2 and E3 accelerated endothelial healing after perivascular injury that destroys both endothelial cells and SMCs, suggesting an important role of this latter cell type in E4's action, which was confirmed using Cre/lox mice inactivating ERα in SMCs. In addition, E4 mediated its effects independently of ERα membrane-initiated signaling, in contrast with E2. Consistently, RNA sequencing analysis revealed that transcriptomic and cellular signatures in response to E4 profoundly differed from those of E2. Thus, whereas acceleration of endothelial healing by estrogens had been viewed as entirely dependent on endothelial ERα, these results highlight the very specific pharmacological profile of the natural estrogen E4, revealing the importance of dialogue between SMCs and endothelial cells in its arterial protection.


Assuntos
Células Endoteliais , Estrogênios , Animais , Camundongos , Estrogênios/farmacologia , Receptor alfa de Estrogênio/genética , Estradiol/farmacologia , Artérias
5.
Elife ; 102021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34842136

RESUMO

Estrogen receptor alpha (ERα) activation by estrogens prevents atheroma through its nuclear action, whereas plasma membrane-located ERα accelerates endothelial healing. The genetic deficiency of ERα was associated with a reduction in flow-mediated dilation (FMD) in one man. Here, we evaluated ex vivo the role of ERα on FMD of resistance arteries. FMD, but not agonist (acetylcholine, insulin)-mediated dilation, was reduced in male and female mice lacking ERα (Esr1-/- mice) compared to wild-type mice and was not dependent on the presence of estrogens. In C451A-ERα mice lacking membrane ERα, not in mice lacking AF2-dependent nuclear ERα actions, FMD was reduced, and restored by antioxidant treatments. Compared to wild-type mice, isolated perfused kidneys of C451A-ERα mice revealed a decreased flow-mediated nitrate production and an increased H2O2 production. Thus, endothelial membrane ERα promotes NO bioavailability through inhibition of oxidative stress and thereby participates in FMD in a ligand-independent manner.


Assuntos
Circulação Sanguínea , Receptor alfa de Estrogênio/genética , Peróxido de Hidrogênio/metabolismo , Animais , Receptor alfa de Estrogênio/metabolismo , Feminino , Ligantes , Masculino , Camundongos
6.
Cancer Immunol Res ; 7(8): 1332-1344, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31175139

RESUMO

The escape of cancer cells from host immunosurveillance involves a shift in immune responses, including an imbalance in Th1 and Th2 cells. A Th1-dominated immune response predicts positive outcomes in colorectal cancer. The E3 ubiquitin ligase, Asb2α, is expressed in Th2 cells, but its roles in T-cell maturation and cancer are unclear. We provide evidence that the Th2 master regulator, Gata3, induces Asb2 Loss of Asb2 did not affect Th differentiation ex vivo, but reduced IL4 production from Th2 cells. We found that high ASB2 expression was associated with poor outcome in colorectal cancer. Loss of Asb2 from hematopoietic cells promoted a Th1 response and attenuated colitis-associated tumorigenesis in mice. Diminished Th2 function correlated with increased IFNγ production and an enhanced type 1 antitumor immune response in Asb2-deficient mice. Our work suggests that Asb2α promotes a Th2 phenotype in vivo, which in turn is associated with tumor progression in a mouse model of colitis.


Assuntos
Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Imunomodulação , Células Th2/imunologia , Células Th2/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Sítios de Ligação , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Biologia Computacional/métodos , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imunofenotipagem , Camundongos , Ligação Proteica , Recidiva , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa