Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Transl Med ; 21(1): 667, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37752585

RESUMO

BACKGROUND: Spinal cord glioma (SCG) is considered an orphan disease that lacks effective treatment options with margins that are surgically inaccessible and an overall paucity of literature on the topic. The tumor microenvironment is a critical factor to consider in treatment and modeling design, especially with respect to the unresectable tumor edge. Recently, our group developed a high-grade spinal cord glioma (SCG) model in Göttingen minipigs. METHODS: Immunofluorescence and ELISA were performed to explore the microenvironmental features and inflammation cytokines in this minipig SCG model. Protein carbonyl assay and GSH/GSSG assay were analyzed in the core and edge lesions in the minipig SCG model. The primary core and edge cells proliferation rate were shown in vitro, and the xenograft model in vivo. RESULTS: We identified an elevated Ki-67 proliferative index, vascular and pericyte markers, CD31 and desmin in the tumor edge as compared to the tumor core. In addition, we found that the tumor edge demonstrated increased pro-inflammatory and gliomagenic cytokines including TNF-α, IL-1ß, and IL-6. Furthermore, the mediation of oxidative stress is upregulated in the tumor edge. Hypoxic markers had statistically significant increased staining in the tumor core, but were notably still present in the tumor edge. The edge cells cultures derived from SCG biopsy also demonstrated an increased proliferative rate compared to core cell cultures in a xenotransplantation model. CONCLUSIONS: Our study demonstrates heterogeneity in microenvironmental features in our minipig model of high-grade SCG, with a phenotype at the edge showing increased oxidative stress, proliferation, inflammatory cytokines, neovascularization, and decreased but present staining for hypoxic markers. These findings support the utility of this model as a means for investigating therapeutic approaches targeting the more aggressive and surgically unresectable tumor border.


Assuntos
Glioma , Microambiente Tumoral , Animais , Humanos , Suínos , Porco Miniatura , Medula Espinal , Citocinas , Modelos Animais de Doenças
2.
Stereotact Funct Neurosurg ; 99(4): 322-328, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33657550

RESUMO

This manuscript introduces the latest generation of a patient-mounted platform designed for segmental injections of therapeutics direct into the spinal cord parenchyma. It emphasizes its importance and it presents the rationale for developing this delivery methodology. It compares the newest with the previous generations, detailing how the modifications can streamline transportation, assembly, sterilization, and utilization of the platform by different surgeons. Finally, the illustrations depict the main alterations, as well as a cadaveric assessment of the device prototype in the cervical and thoracolumbar regions.


Assuntos
Medula Espinal , Humanos , Injeções Espinhais , Medula Espinal/cirurgia
3.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884748

RESUMO

Intramedullary spinal cord tumors are a rare and understudied cancer with poor treatment options and prognosis. Our prior study used a combination of PDGF-B, HRAS, and p53 knockdown to induce the development of high-grade glioma in the spinal cords of minipigs. In this study, we evaluate the ability of each vector alone and combinations of vectors to produce high-grade spinal cord gliomas. Eight groups of rats (n = 8/group) underwent thoracolumbar laminectomy and injection of lentiviral vector in the lateral white matter of the spinal cord. Each group received a different combination of lentiviral vectors expressing PDGF-B, a constitutively active HRAS mutant, or shRNA targeting p53, or a control vector. All animals were monitored once per week for clinical deficits for 98 days. Tissues were harvested and analyzed using hematoxylin and eosin (H&E) and immunohistochemical (IHC) staining. Rats injected with PDGF-B+HRAS+sh-p53 (triple cocktail) exhibited statistically significant declines in all behavioral measures (Basso Beattie Bresnahan scoring, Tarlov scoring, weight, and survival rate) over time when compared to the control. Histologically, all groups except the control and those injected with sh-p53 displayed the development of tumors at the injection site, although there were differences in the rate of tumor growth and the histopathological features of the lesions between groups. Examination of immunohistochemistry revealed rats receiving triple cocktail displayed the largest and most significant increase in the Ki67 proliferation index and GFAP positivity than any other group. PDGF-B+HRAS also displayed a significant increase in the Ki67 proliferation index. Rats receiving PDGF-B alone and PDGF-B+ sh-p53 displayed more a significant increase in SOX2-positive staining than in any other group. We found that different vector combinations produced differing high-grade glioma models in rodents. The combination of all three vectors produced a model of high-grade glioma more efficiently and aggressively with respect to behavioral, physiological, and histological characteristics than the rest of the vector combinations. Thus, the present rat model of spinal cord glioma may potentially be used to evaluate therapeutic strategies in the future.


Assuntos
Glioma/etiologia , Lentivirus/genética , Neoplasias da Medula Espinal/etiologia , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Vetores Genéticos , Glioma/patologia , Glioma/fisiopatologia , Mutação , Neoplasias Experimentais/etiologia , Neoplasias Experimentais/patologia , Neoplasias Experimentais/fisiopatologia , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Neoplasias da Medula Espinal/patologia , Neoplasias da Medula Espinal/fisiopatologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
4.
Stereotact Funct Neurosurg ; 97(5-6): 293-302, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31914453

RESUMO

BACKGROUND: Stereotactic targeting techniques in nonhuman primate (NHP) models are often utilized in the preclinical investigation of new drug therapies with the goal of demonstrating accurate and reliable delivery of a therapy to the target tissue. However, targeting certain neuroanatomical structures can be challenging. The deep cerebellar nuclei, specifically the dentate nucleus, are potential stereotactic targets for the treatment of certain ataxias. Currently, there are no detailed techniques describing frameless targeting of these structures in a NHP model. A well-defined, accurate, and reliable stereotactic surgical approach to the dentate in these animal models is critical to prove the feasibility and safety of drug delivery in order to develop clinical protocols. METHODS: Frameless stereotactic neuronavigation was employed to target the bilateral dentate nuclei of the cerebellum in four healthy juvenile Cynomolgus monkeys via a suboccipital, transcerebellar approach. The precision and accuracy of the targeting were evaluated radiologically and histologically. RESULTS: Using the described surgical methodology, we were successful in hitting the target deep cerebellar nuclei seven out of eight times. CONCLUSION: Frameless stereotactic targeting of the cerebellar dentate nuclei in NHPs for future investigational drug delivery is feasible, safe, and accurate as described by this report. Potential areas for improving the technique are discussed.


Assuntos
Núcleos Cerebelares/diagnóstico por imagem , Núcleos Cerebelares/cirurgia , Terapia Genética/métodos , Neuronavegação/métodos , Técnicas Estereotáxicas , Animais , Feminino , Imageamento Tridimensional/métodos , Macaca fascicularis , Masculino , Neuronavegação/instrumentação , Primatas
5.
Stereotact Funct Neurosurg ; 95(1): 60-68, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28132063

RESUMO

BACKGROUND: Cell-based therapies are a promising treatment option for traumatic, tumorigenic and degenerative diseases of the spinal cord. Transplantation into the spinal cord is achieved with intravascular, intrathecal, or direct intraparenchymal injection. The current standard for direct injection is limited by surgical invasiveness, difficulty in reinjection, and the inability to directly target anatomical or pathological landmarks. The objective of this study was to present the proof of principle for minimally invasive, percutaneous transplantation of stem cells into the spinal cord parenchyma of live minipigs under MR guidance. METHODS: An MR-compatible spine injection platform was developed to work with the ClearPoint SmartFrame system (MRI Interventions Inc.). The system was attached to the spine of 2 live minipigs, a percutaneous injection cannula was advanced into the spinal cord under MR guidance, and cells were delivered to the cord. RESULTS: A graft of 2.5 × 106 human (n = 1) or porcine (n = 1) neural stem cells labeled with ferumoxytol nanoparticles was transplanted into the ventral horn of the spinal cord with MR guidance in 2 animals. Graft delivery was visualized with postprocedure MRI, and characteristic iron precipitates were identified in the spinal cord by Prussian blue histochemistry. Grafted stem cells were observed in the spinal cord of the pig injected with porcine neural stem cells. No postoperative morbidity was observed in either animal. CONCLUSION: This report supports the proof of principle for transplantation and visualization of pharmacological or biological agents into the spinal cord of a large animal under the guidance of MRI.


Assuntos
Imageamento por Ressonância Magnética , Células-Tronco Neurais/transplante , Medula Espinal/cirurgia , Transplante de Células-Tronco/métodos , Animais , Humanos , Medula Espinal/diagnóstico por imagem , Suínos , Porco Miniatura
6.
Ann Neurol ; 75(3): 363-73, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24510776

RESUMO

OBJECTIVE: The US Food and Drug Administration-approved trial, "A Phase 1, Open-Label, First-in-Human, Feasibility and Safety Study of Human Spinal Cord-Derived Neural Stem Cell Transplantation for the Treatment of Amyotrophic Lateral Sclerosis, Protocol Number: NS2008-1," is complete. Our overall objective was to assess the safety and feasibility of stem cell transplantation into lumbar and/or cervical spinal cord regions in amyotrophic lateral sclerosis (ALS) subjects. METHODS: Preliminary results have been reported on the initial trial cohort of 12 ALS subjects. Here, we describe the safety and functional outcome monitoring results for the final trial cohort, consisting of 6 ALS subjects receiving 5 unilateral cervical intraspinal neural stem cell injections. Three of these subjects previously received 10 total bilateral lumbar injections as part of the earlier trial cohort. All injections utilized a novel spinal-mounted stabilization and injection device to deliver 100,000 neural stem cells per injection, for a dosing range up to 1.5 million cells. Subject assessments included detailed pre- and postsurgical neurological outcome measures. RESULTS: The cervical injection procedure was well tolerated and disease progression did not accelerate in any subject, verifying the safety and feasibility of cervical and dual-targeting approaches. Analyses on outcome data revealed preliminary insight into potential windows of stem cell biological activity and identified clinical assessment measures that closely correlate with ALS Functional Rating Scale-Revised scores, a standard assessment for ALS clinical trials. INTERPRETATION: This is the first report of cervical and dual-targeted intraspinal transplantation of neural stem cells in ALS subjects. This approach is feasible and well-tolerated, supporting future trial phases examining therapeutic dosing and efficacy.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Células-Tronco Neurais/transplante , Medula Espinal/cirurgia , Adulto , Idoso , Vértebras Cervicais/cirurgia , Feminino , Humanos , Vértebras Lombares/cirurgia , Masculino , Pessoa de Meia-Idade , Recuperação de Função Fisiológica , Transplante de Células-Tronco/efeitos adversos , Transplante de Células-Tronco/métodos , Resultado do Tratamento
7.
Stem Cells ; 30(6): 1144-51, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22415942

RESUMO

Advances in stem cell biology have generated intense interest in the prospect of transplanting stem cells into the nervous system for the treatment of neurodegenerative diseases. Here, we report the results of an ongoing phase I trial of intraspinal injections of fetal-derived neural stems cells in patients with amyotrophic lateral sclerosis (ALS). This is a first-in-human clinical trial with the goal of assessing the safety and tolerability of the surgical procedure, the introduction of stem cells into the spinal cord, and the use of immunosuppressant drugs in this patient population. Twelve patients received either five unilateral or five bilateral (10 total) injections into the lumbar spinal cord at a dose of 100,000 cells per injection. All patients tolerated the treatment without any long-term complications related to either the surgical procedure or the implantation of stem cells. Clinical assessments ranging from 6 to 18 months after transplantation demonstrated no evidence of acceleration of disease progression due to the intervention. One patient has shown improvement in his clinical status, although these data must be interpreted with caution since this trial was neither designed nor powered to measure treatment efficacy. These results allow us to report success in achieving the phase I goal of demonstrating safety of this therapeutic approach. Based on these positive results, we can now advance this trial by testing intraspinal injections into the cervical spinal cord, with the goal of protecting motor neuron pools affecting respiratory function, which may prolong life for patients with ALS.


Assuntos
Esclerose Lateral Amiotrófica/cirurgia , Células-Tronco Neurais/transplante , Transplante de Células-Tronco/métodos , Adulto , Idoso , Progressão da Doença , Humanos , Injeções Espinhais , Região Lombossacral/cirurgia , Masculino , Pessoa de Meia-Idade , Medula Espinal/patologia , Medula Espinal/cirurgia , Resultado do Tratamento
8.
Neurobiol Dis ; 48(2): 236-42, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21889591

RESUMO

Gene therapy continues to be a potential option for amyotrophic lateral sclerosis (ALS). This chapter will inform the reader about promising therapeutic transgenes and proof-of-principle studies in transgenic rodent models of ALS. Challenges regarding the disease targets and time for therapeutic intervention will be also discussed. Finally, restorative therapy for ALS, as well as gene therapy for other motor neuron diseases will be briefly reviewed.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Terapia Genética/métodos , Esclerose Lateral Amiotrófica/epidemiologia , Esclerose Lateral Amiotrófica/patologia , Animais , Animais Geneticamente Modificados , Astrócitos/fisiologia , Terapia Baseada em Transplante de Células e Tecidos , Modelos Animais de Doenças , Inativação Gênica , Humanos , Neurônios Motores/fisiologia , Atrofia Muscular Espinal/terapia , Junção Neuromuscular/fisiologia
9.
Neurobiol Dis ; 45(3): 992-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22198571

RESUMO

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease, which is the leading genetic cause of mortality in children. To date no effective treatment exists for SMA. The genetic basis for SMA has been well documented as a mutation in the gene for survival of motor neuron (SMN). Because there is an understanding of which gene needs to be replaced (SMN) and where it needs to be replaced (spinal motor systems), SMA is an ideal target for gene replacement via gene therapy. While a variety of animal models for SMA exist, they are either too fulminant to realistically test most gene delivery strategies, or too mild to provide a robust read out of the therapeutic effect. The field, therefore, requires a robust model with a slower symptomatic progression. A conditional knockout of SMN in neuronal cell types, giving a phenotype of functional motor defects, weight loss and reduced life expectancy partially satisfies this need (Frugier, Tiziano et al. 2000). This Cre/LoxP mediated neuron specific model presents an attractive alternative. In the present manuscript, we characterize the functional motor deficits of the model. We observed a decline in locomotor ability, as assessed by open field testing. The finer functions of motor skills such as righting reflex and grip strength were also observed to degenerate in the SMA mice. The decline in motor function that we observed here correlates with the anatomical decline in motor neurons and motor axons presented in the literature (Ferri, Melki et al. 2004). This work adds to our understanding and knowledge base of this Cre/LoxP model and provides a basis from which functional recovery, following interventions can be assessed.


Assuntos
Modelos Animais de Doenças , Atrofia Muscular Espinal/patologia , Atrofia Muscular Espinal/fisiopatologia , Mutação , Fatores Etários , Animais , Comportamento Exploratório/fisiologia , Lateralidade Funcional/genética , Genótipo , Força da Mão/fisiologia , Camundongos , Camundongos Transgênicos , Atividade Motora/genética , Neurônios Motores/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/mortalidade , Estatística como Assunto , Proteína 2 de Sobrevivência do Neurônio Motor/genética
10.
Amyotroph Lateral Scler ; 12(5): 331-9, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21864053

RESUMO

Amyotrophic lateral sclerosis (ALS) is characterized by motor neuron loss leading to paralysis and death. Vascular endothelial growth factor (VEGF) has angiogenic, neurotrophic, and neuroprotective properties, and has preserved neuromuscular function and protected motor neurons in rats engineered to overexpress the human gene coding the mutated G93A form of the superoxide dismutase-1 (SOD1). We assessed the effects of intramuscular administration of a plasmid that encodes a zinc finger protein transcription factor (ZFP-TF) engineered to induce VEGF expression in the SOD1 rat model of ALS. Weekly injections of the plasmid preserved ipsilateral hindlimb grip strength and markedly improved rotarod performance in SOD1 rats compared to the vehicle-treated group. The number of motor neurons and the proportion of innervated neuromuscular junctions were similar in both groups. In conclusion, our data suggest that administration of the VEGF-ZFP-TF may be neuroprotective and has potential as a safe and practical approach for the management of motor disability in ALS.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Terapia Genética , Superóxido Dismutase/genética , Fatores de Transcrição/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Dedos de Zinco , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Terapia Genética/métodos , Humanos , Injeções Intramusculares , Masculino , Músculo Esquelético/fisiologia , Ratos , Ratos Transgênicos , Superóxido Dismutase/biossíntese , Superóxido Dismutase/fisiologia , Superóxido Dismutase-1 , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/fisiologia , Dedos de Zinco/genética
11.
Stereotact Funct Neurosurg ; 89(5): 275-85, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21849811

RESUMO

BACKGROUND/AIMS: Expression of the neuropeptide galanin in hippocampal neurons reduces seizures in the kainic acid rodent model of epilepsy. In order to translate these findings into a human clinical trial, the safety and feasibility of hippocampal adeno-associated viral (AAV) vector expression must be demonstrated in a nonhuman primate model. METHODS: The Stealth Frameless Stereotactic System and Navigus Biopsy Appliance (Medtronic) were used to inject self-complementary AAV2 carrying the gene for green fluorescent protein (GFP) into monkey hippocampi. Using a single occipital trajectory per side (n = 8 trajectories), multiple injections spaced by 5 mm were delivered to each hippocampus. RESULTS: GFP was expressed in both neuronal and glial cells. Injections led to nonhomogeneous gene expression, suggesting closer spacing of injections may lead to more gene expression. Increasing injection volumes entailed a general increase in volume of expression, but there was no overlap of expression within the 5-mm injection interval. Efforts to avoid the occipital horn failed to prevent leaking of vector into the ventricle, and resulted in deviation of the trajectory at proximal points from the hippocampus. CONCLUSION: Using the occipital approach, adequate cannulation of the monkey hippocampus will require transventricular trajectories.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Hipocampo , Neuronavegação/métodos , Animais , Técnicas de Transferência de Genes/instrumentação , Vetores Genéticos/administração & dosagem , Proteínas de Fluorescência Verde/administração & dosagem , Proteínas de Fluorescência Verde/genética , Hipocampo/metabolismo , Hipocampo/virologia , Macaca mulatta , Masculino
12.
J Clin Neurosci ; 77: 199-202, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32336639

RESUMO

The thoracic sympathetic chain is implicated in several disease processes including palmar hyperhidrosis and complex regional pain syndrome. These diseases are often medically refractory and require surgical treatments including sympathectomies and ganglion blocks. The use of chemogenetic or optogenetic technologies to modulate sympathetic chain activity may be a potential treatment for these diseases. However, there is no established thoracoscopic surgical approach to deliver viral vectors into the thoracic sympathetic chain and ganglia. Our objective was to evaluate the feasibility of thoracoscopic injection of the swine sympathetic chain. Two Landrace farm pigs underwent a novel procedure for thoracoscopic sympathetic chain injections. One was non-survival and one was a five-day survival surgery. Both procedures successfully delivered methylene blue in the thoracic sympathetic chain. Over the five-day postoperative period, the animal displayed stable vital signs. Thoracoscopic targeted injections of the sympathetic chain is a feasible approach to deliver therapeutics in swine. Future studies should investigate the use of transgene expression as a potential means to control sympathetic output for the development of novel therapies for palmar or axillary hyperhidrosis, thoracic neuropathic pain syndromes and select peripheral vascular diseases.


Assuntos
Gânglios Simpáticos/cirurgia , Toracoscopia/métodos , Animais , Vias Autônomas , Feminino , Optogenética/métodos , Suínos
13.
Neurosurgery ; 87(4): 847-853, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31625573

RESUMO

BACKGROUND: Neurodegenerative diseases and spinal cord injury can affect respiratory function often through motor neuron loss innervating the diaphragm. To reinnervate this muscle, new motor neurons could be transplanted into the phrenic nerve (PN), allowing them to extend axons to the diaphragm. These neurons could then be driven by an optogenetics approach to regulate breathing. This type of approach has already been demonstrated in the peripheral nerves of mice. However, there is no established thoracoscopic approach to PN injection. Also, there is currently a lack of preclinical large animal models of diaphragmatic dysfunction in order to evaluate the efficacy of potential treatments. OBJECTIVE: To evaluate the feasibility of thoracoscopic drug delivery into the PN and to assess the viability of hemidiaphragmatic paralysis in a porcine model. METHODS: Two Landrace farm pigs underwent a novel procedure for thoracoscopic PN injections, including 1 nonsurvival and 1 survival surgery. Nonsurvival surgery involved bilateral PN injections and ligation. Survival surgery included a right PN injection and transection proximal to the injection site to induce hemidiaphragmatic paralysis. RESULTS: PN injections were successfully performed in both procedures. The animal that underwent survival surgery recovered postoperatively with an established right hemidiaphragmatic paralysis. Over the 5-d postoperative period, the animal displayed stable vital signs and oxygenation saturation on room air with voluntary breathing. CONCLUSION: Thoracoscopic targeting of the porcine PN is a feasible approach to administer therapeutic agents. A swine model of hemidiaphragmatic paralysis induced by unilateral PN ligation or transection may be potentially used to study diaphragmatic reinnervation following delivery of therapeutics.


Assuntos
Diafragma/inervação , Modelos Animais de Doenças , Nervo Frênico/cirurgia , Toracoscopia/métodos , Animais , Diafragma/patologia , Diafragma/fisiopatologia , Feminino , Projetos Piloto , Paralisia Respiratória/etiologia , Traumatismos da Medula Espinal/complicações , Suínos
14.
Sci Rep ; 10(1): 5291, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32210315

RESUMO

BACKGROUND: Prior studies have applied driver mutations targeting the RTK/RAS/PI3K and p53 pathways to induce the formation of high-grade gliomas in rodent models. In the present study, we report the production of a high-grade spinal cord glioma model in pigs using lentiviral gene transfer. METHODS: Six Gottingen Minipigs received thoracolumbar (T14-L1) lateral white matter injections of a combination of lentiviral vectors, expressing platelet-derived growth factor beta (PDGF-B), constitutive HRAS, and shRNA-p53 respectively. All animals received injection of control vectors into the contralateral cord. Animals underwent baseline and endpoint magnetic resonance imaging (MRI) and were evaluated daily for clinical deficits. Hematoxylin and eosin (H&E) and immunohistochemical analysis was conducted. Data are presented using descriptive statistics including relative frequencies, mean, standard deviation, and range. RESULTS: 100% of animals (n = 6/6) developed clinical motor deficits ipsilateral to the oncogenic lentiviral injections by a three-week endpoint. MRI scans at endpoint demonstrated contrast enhancing mass lesions at the site of oncogenic lentiviral injection and not at the site of control injections. Immunohistochemistry demonstrated positive staining for GFAP, Olig2, and a high Ki-67 proliferative index. Histopathologic features demonstrate consistent and reproducible growth of a high-grade glioma in all animals. CONCLUSIONS: Lentiviral gene transfer represents a feasible pathway to glioma modeling in higher order species. The present model is the first lentiviral vector induced pig model of high-grade spinal cord glioma and may potentially be used in preclinical therapeutic development programs.


Assuntos
Modelos Animais de Doenças , Vetores Genéticos/administração & dosagem , Glioma/patologia , Lentivirus/genética , Transtornos Motores/patologia , Neoplasias da Medula Espinal/patologia , Animais , Feminino , Vetores Genéticos/genética , Glioma/genética , Humanos , Masculino , Transtornos Motores/genética , Gradação de Tumores , Neoplasias da Medula Espinal/genética , Suínos , Porco Miniatura
15.
Neurobiol Dis ; 33(3): 473-81, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19135533

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a devastating disease that is characterized by the progressive loss of motor neurons. Patients with ALS usually die from respiratory failure due to respiratory muscle paralysis. Consequently, therapies aimed at preserving segmental function of the respiratory motor neurons could extend life for these patients. Insulin-like growth factor-I (IGF-I) is known to be a potent survival factor for motor neurons. In this study we induced high levels of IGF-I expression in the cervical spinal cord of hSOD1(G93A) rats with intraspinal cord (ISC) injections of an adeno-associated virus serotype 2 vector (CERE-130). This approach reduced the extent of motor neuron loss in the treated segments of the spinal cord. However, a corresponding preservation of motor function was observed in male, but not female, hSOD1(G93A) rats. We conclude that ISC injection of CERE-130 has the potential to protect motor neurons and preserve neuromuscular function in ALS.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Dependovirus/genética , Terapia Genética , Fator de Crescimento Insulin-Like I/genética , Medula Espinal/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Progressão da Doença , Feminino , Vetores Genéticos , Injeções Espinhais , Masculino , Atividade Motora , Neurônios Motores/fisiologia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Fatores Sexuais , Análise de Sobrevida , Transdução Genética
16.
Genet Vaccines Ther ; 7: 1, 2009 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-19144125

RESUMO

BACKGROUND: The delivery of therapeutic genes to the central nervous system (CNS) using viral vectors represents an appealing strategy for the treatment of nerve injury and disorders of the CNS. Important factors determining CNS targeting include tropism of the viral vectors and retrograde transport of the vector particles. Retrograde transport of equine anemia virus (EIAV)-based lentiviral vectors pseudotyped with the glycoprotein derived from the Rabies virus RabERA strain from peripheral muscle to spinal motor neurons (MNs) was previously reported. Despite therapeutic effects achieved in mouse models of amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), the efficiency of this approach needs to be improved for clinical translation. To date there has not been a quantitative assessment of pseudotyped HIV-1-based lentiviral vectors to transduce MNs. Here, we describe quantitative tests to analyze the retrograde transport capacity of HIV-1 vectors pseudotyped with the G glycoprotein derived from Rabies and Rabies-related viruses (Lyssaviruses). METHODS: With a view toward optimizing the retrograde transport properties of HIV-1-based lentiviral vectors, we compared the glycoproteins from different enveloped viruses belonging to the Rhabdoviridae family, genus Lyssavirus, and evaluated their ability to transduce specific cell populations and promote retrograde axonal transport. We first tested the transduction performance of these pseudotypes in vitro in SH-SY5Y neuroblastoma cells, NSC-34 neuroblastoma-spinal cord hybrid cells, and primary mixed spinal cord and pure astrocyte cultures. We then analyzed the uptake and retrograde transport of these pseudotyped vectors in vitro, using Campenot chambers. Finally, intraneural injections were performed to evaluate the in vivo retrograde axonal transport of these pseudotypes. RESULTS: Both the in vitro and in vivo studies demonstrated that lentiviral vectors pseudotyped with the glycoprotein derived from the Rabies virus PV strain possessed the best performance and neuronal tropism among the vectors tested. CONCLUSION: Our results indicate that HIV-1-based lentiviral vectors pseudotyped with the Rabies PV glycoprotein might provide important vehicles for CNS targeting by peripheral injection in the treatment of motor neuron diseases (MND), pain, and neuropathy.

17.
Mol Ther ; 15(3): 542-51, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17213837

RESUMO

Restraining excitatory neurotransmission within a seizure focus provides a nondestructive treatment strategy for intractable neocortical epilepsy. Clostridial toxin light chain (LC) inhibits synaptic transmission by digesting a critical vesicle-docking protein, synaptobrevin, without directly altering neuronal health. This study tests the treatment efficacy of adenoviral vector delivered LC (AdLC) on a model of seizures in rats induced by motor cortex penicillin (PCN) injection. LC expression significantly reduced electroencephalogram (EEG) frequency, amplitude, duration, and latency compared to control groups injected with either an adenoviral vector bearing green fluorescent protein (AdGFP) or phosphate buffered solution (PBS). Correspondingly, LC gene expression improved behavioral manifestations including seizure severity and latency. There was no statistical difference in motor function before and after vector administration between treatment and control groups. Histological analysis revealed spatially discrete LC expression with corresponding synaptobrevin depletion in the cortex surrounding the injection site. Thus, vector-mediated LC gene delivery is capable of improving both the EEG and behavioral manifestations of PCN-induced focal neocortical seizures through synaptobrevin depletion.


Assuntos
DNA Viral/genética , Penicilinas/toxicidade , Convulsões/genética , Convulsões/terapia , Animais , Comportamento Animal , Peso Corporal/efeitos dos fármacos , Eletroencefalografia , Expressão Gênica , Terapia Genética , Masculino , Córtex Motor/efeitos dos fármacos , Penicilinas/administração & dosagem , Proteínas R-SNARE/metabolismo , Ratos , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Convulsões/metabolismo , Transgenes/genética
18.
Stereotact Funct Neurosurg ; 86(2): 67-74, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18073518

RESUMO

BACKGROUND/AIMS: No validated delivery technique exists for accurate, reproducible delivery of biological therapies to discrete spinal cord targets. To address this unmet need, we have constructed a stabilized platform capable of supporting physiologic mapping, through microelectrode recording, and cellular or viral payload delivery to the ventral horn. METHODS: A porcine animal model (n = 7) has been chosen based upon the inherent morphologic similarities between the human and porcine spine. Animals underwent physiologic mapping and subsequent microinjection of a green-fluorescent-protein-labeled cell suspension. Sacrifice (t = 3 h) was performed immediately following behavioral assessment. RESULTS: Histologic analysis has supported our ability to achieve localization to the ipsilateral ventral horn in the spinal cord. Complications included death due to malignant hyperthermia (n = 1), hindlimb dysfunction attributable to epidural hematoma (n = 1), and hindlimb dysfunction attributable to cord penetration (n = 2). CONCLUSIONS: These results indicate an ability to achieve accurate targeting, but the elevated incidence of neurologic morbidity will require further studies with longer follow-ups that incorporate procedural and equipment modifications that will allow for a reduced number of cord penetrations and will account for observed cardiorespiratory-associated cord movement. These initial results reinforce the challenges of translating biological restorative therapies from small to large animal models and ultimately to humans.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Microinjeções/métodos , Medula Espinal/patologia , Medula Espinal/fisiologia , Técnicas Estereotáxicas/instrumentação , Animais , Células do Corno Anterior/patologia , Células do Corno Anterior/fisiologia , Comportamento Animal/fisiologia , Terapia Baseada em Transplante de Células e Tecidos/instrumentação , Córtex Cerebral/patologia , Potencial Evocado Motor/fisiologia , Feminino , Microeletrodos , Microinjeções/efeitos adversos , Microinjeções/instrumentação , Modelos Animais , Ratos , Reprodutibilidade dos Testes , Técnicas Estereotáxicas/efeitos adversos , Suínos
19.
Expert Opin Biol Ther ; 18(3): 293-307, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29249183

RESUMO

INTRODUCTION: Adeno-associated viral (AAV) vector-mediated gene delivery to the spinal cord has finally entered the pathway towards regulatory approval. Phase 1 clinical trials using AAV gene therapy for pediatric disorders - spinal muscular atrophy (SMA) and giant axonal neuropathy (GAN) - are now underway. AREAS COVERED: This review addresses the latest progress in the field of AAV gene delivery to the spinal cord, particularly focusing on the most prominent AAV serotypes and delivery methodologies to the spinal cord. Candidate diseases and scaling up experiments in large animals are also discussed. EXPERT OPINION: Intravenous (IV) and intrathecal (IT) deliveries seem to undoubtedly be the preferred routes of administration for diffuse spinal cord delivery of therapeutic AAV vectors that can cross the blood-brain barrier (BBB) and correct inherited genetic disorders. Conversely, intraparenchymal delivery is still an undervalued but very viable approach for segmental therapy in afflictions such as ALS or Pompe Disease as a means to prevent respiratory dysfunction.


Assuntos
Dependovirus/genética , Neuropatia Axonal Gigante/terapia , Atrofia Muscular Espinal/terapia , Medula Espinal/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , RNA Interferente Pequeno/genética
20.
J Clin Neurosci ; 48: 173-180, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29089163

RESUMO

Extensive pre-clinical and clinical studies have searched for therapeutic efficacy of cell-based therapeutics in diseases of the Central Nervous System (CNS) with no other viable options. Allogeneic cells represent the primary source of these therapies and immunosuppressive regimens have been empirically employed based on experience with solid organ transplantation, attempting to avoid immune mediated graft rejection. In this study, we aimed to 1) characterize the host immune response to stem cells transplanted into the CNS and 2) develop a non-invasive method for detecting immune response to transplanted cell grafts. Human neural progenitor cells were transplanted into the spinal cord of 10 Göttingen minipigs, of which 5 received no immunosuppression and 5 received Tacrolimus. Peripheral blood samples were collected longitudinally for flow cytometry cross match studies. Necropsy was performed at day 21 and spinal cord tissue analysis. We observed a transient increase in xeno-reactive antibodies was detected on post-operative day 7 and 14 in pigs that did not receive immunosuppression. This response was not detected in pigs that received Tacrolimus immunosuppression. No difference in graft survival was observed between the groups. Infiltration of numerous immune mediators including granulocytes, T lymphocytes, and activated microglia, and complement deposition were detected. In summary, a systemic immunologic response to stem cell grafts was detected for two weeks after transplantation using peripheral blood. This could be used as a non-invasive biomarker by investigators for detection of immunologic rejection. However, the absence of a detectable response in peripheral blood does not rule out a parenchymal immune response.


Assuntos
Anticorpos Heterófilos/sangue , Rejeição de Enxerto/prevenção & controle , Células-Tronco Neurais/imunologia , Medula Espinal/cirurgia , Animais , Proteínas do Sistema Complemento/metabolismo , Sobrevivência de Enxerto/efeitos dos fármacos , Granulócitos/efeitos dos fármacos , Humanos , Terapia de Imunossupressão , Imunossupressores/farmacologia , Microglia/efeitos dos fármacos , Medula Espinal/metabolismo , Transplante de Células-Tronco/métodos , Suínos , Linfócitos T/efeitos dos fármacos , Tacrolimo/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa