Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Breast Cancer Res ; 22(1): 57, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32466777

RESUMO

BACKGROUND: For breast cancer patients undergoing neoadjuvant chemotherapy (NAC), pathologic complete response (pCR; no invasive or in situ) cannot be assessed non-invasively so all patients undergo surgery. The aim of our study was to develop and validate a radiomics classifier that classifies breast cancer pCR post-NAC on MRI prior to surgery. METHODS: This retrospective study included women treated with NAC for breast cancer from 2014 to 2016 with (1) pre- and post-NAC breast MRI and (2) post-NAC surgical pathology report assessing response. Automated radiomics analysis of pre- and post-NAC breast MRI involved image segmentation, radiomics feature extraction, feature pre-filtering, and classifier building through recursive feature elimination random forest (RFE-RF) machine learning. The RFE-RF classifier was trained with nested five-fold cross-validation using (a) radiomics only (model 1) and (b) radiomics and molecular subtype (model 2). Class imbalance was addressed using the synthetic minority oversampling technique. RESULTS: Two hundred seventy-three women with 278 invasive breast cancers were included; the training set consisted of 222 cancers (61 pCR, 161 no-pCR; mean age 51.8 years, SD 11.8), and the independent test set consisted of 56 cancers (13 pCR, 43 no-pCR; mean age 51.3 years, SD 11.8). There was no significant difference in pCR or molecular subtype between the training and test sets. Model 1 achieved a cross-validation AUROC of 0.72 (95% CI 0.64, 0.79) and a similarly accurate (P = 0.1) AUROC of 0.83 (95% CI 0.71, 0.94) in both the training and test sets. Model 2 achieved a cross-validation AUROC of 0.80 (95% CI 0.72, 0.87) and a similar (P = 0.9) AUROC of 0.78 (95% CI 0.62, 0.94) in both the training and test sets. CONCLUSIONS: This study validated a radiomics classifier combining radiomics with molecular subtypes that accurately classifies pCR on MRI post-NAC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Aprendizado de Máquina , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Carcinoma Ductal de Mama/diagnóstico por imagem , Carcinoma Ductal de Mama/tratamento farmacológico , Carcinoma Ductal de Mama/patologia , Carcinoma Ductal de Mama/cirurgia , Carcinoma Lobular/diagnóstico por imagem , Carcinoma Lobular/tratamento farmacológico , Carcinoma Lobular/patologia , Carcinoma Lobular/cirurgia , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Terapia Neoadjuvante , Prognóstico , Curva ROC , Estudos Retrospectivos
2.
Proc Natl Acad Sci U S A ; 112(46): E6265-73, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26578786

RESUMO

Noninvasive, radiological image-based detection and stratification of Gleason patterns can impact clinical outcomes, treatment selection, and the determination of disease status at diagnosis without subjecting patients to surgical biopsies. We present machine learning-based automatic classification of prostate cancer aggressiveness by combining apparent diffusion coefficient (ADC) and T2-weighted (T2-w) MRI-based texture features. Our approach achieved reasonably accurate classification of Gleason scores (GS) 6(3 + 3) vs. ≥7 and 7(3 + 4) vs. 7(4 + 3) despite the presence of highly unbalanced samples by using two different sample augmentation techniques followed by feature selection-based classification. Our method distinguished between GS 6(3 + 3) and ≥7 cancers with 93% accuracy for cancers occurring in both peripheral (PZ) and transition (TZ) zones and 92% for cancers occurring in the PZ alone. Our approach distinguished the GS 7(3 + 4) from GS 7(4 + 3) with 92% accuracy for cancers occurring in both the PZ and TZ and with 93% for cancers occurring in the PZ alone. In comparison, a classifier using only the ADC mean achieved a top accuracy of 58% for distinguishing GS 6(3 + 3) vs. GS ≥7 for cancers occurring in PZ and TZ and 63% for cancers occurring in PZ alone. The same classifier achieved an accuracy of 59% for distinguishing GS 7(3 + 4) from GS 7(4 + 3) occurring in the PZ and TZ and 60% for cancers occurring in PZ alone. Separate analysis of the cancers occurring in TZ alone was not performed owing to the limited number of samples. Our results suggest that texture features derived from ADC and T2-w MRI together with sample augmentation can help to obtain reasonably accurate classification of Gleason patterns.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Neoplasias da Próstata/diagnóstico por imagem , Humanos , Masculino , Valor Preditivo dos Testes , Radiografia
3.
Eur Radiol ; 25(10): 2840-50, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25991476

RESUMO

OBJECTIVES: To investigate Haralick texture analysis of prostate MRI for cancer detection and differentiating Gleason scores (GS). METHODS: One hundred and forty-seven patients underwent T2- weighted (T2WI) and diffusion-weighted prostate MRI. Cancers ≥0.5 ml and non-cancerous peripheral (PZ) and transition (TZ) zone tissue were identified on T2WI and apparent diffusion coefficient (ADC) maps, using whole-mount pathology as reference. Texture features (Energy, Entropy, Correlation, Homogeneity, Inertia) were extracted and analysed using generalized estimating equations. RESULTS: PZ cancers (n = 143) showed higher Entropy and Inertia and lower Energy, Correlation and Homogeneity compared to non-cancerous tissue on T2WI and ADC maps (p-values: <.0001-0.008). In TZ cancers (n = 43) we observed significant differences for all five texture features on the ADC map (all p-values: <.0001) and for Correlation (p = 0.041) and Inertia (p = 0.001) on T2WI. On ADC maps, GS was associated with higher Entropy (GS 6 vs. 7: p = 0.0225; 6 vs. >7: p = 0.0069) and lower Energy (GS 6 vs. 7: p = 0.0116, 6 vs. >7: p = 0.0039). ADC map Energy (p = 0.0102) and Entropy (p = 0.0019) were significantly different in GS ≤3 + 4 versus ≥4 + 3 cancers; ADC map Entropy remained significant after controlling for the median ADC (p = 0.0291). CONCLUSION: Several Haralick-based texture features appear useful for prostate cancer detection and GS assessment. KEY POINTS: • Several Haralick texture features may differentiate non-cancerous and cancerous prostate tissue. • Tumour Energy and Entropy on ADC maps correlate with Gleason score. • T2w-image-derived texture features are not associated with the Gleason score.


Assuntos
Neoplasias da Próstata/patologia , Adulto , Idoso , Diagnóstico Diferencial , Imagem de Difusão por Ressonância Magnética , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Prostatectomia , Neoplasias da Próstata/cirurgia , Estudos Retrospectivos , Carga Tumoral
4.
Proc IEEE Int Symp Biomed Imaging ; 2016: 168-171, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31723375

RESUMO

Early detection and the assessment of changes in bone metastatic cancers can enable clinicians to monitor disease progression and modify treatment to help achieve improved results for patients. However, poor contrast makes detection difficult, and multiple disease sites make tracking of their changes over time difficult. We present a method for automatically detecting and tracking the longitudinal changes in multiple sclerotic bone metastases from Dual Energy Computed Tomography (DECT) images. We employ a multi-stage approach involving (i) bone and marrow extraction, (ii) slice-wise lesion candidate detection and volumetric segmentation, and (iii) aggregation of these 3D candidates. The algorithm achieved 78% agreement with radiologist identified lesions from 10 patients. Longitudinal consistency in the lesion detection computed over 26 scans using Williams' index was 1.02 ± 0.23 using DICE and 1.03±0.30 using Hausdorff metrics. We also present preliminary results for analyzing lesion material composition changes by using a novel representation computed from the DECT images, where clear differences between bone metastases and normal marrow can be seen.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa