Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Phys Chem Chem Phys ; 24(6): 3523-3531, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-34676858

RESUMO

We present a combined experimental and theoretical study of single-photon ionization of 9-methyladenine (9MA) in the gas phase. In addition to tautomerism, several rotamers due to the rotation of the methyl group may exist. Computations show, however, that solely one rotamer contributes because of low population in the molecular beam and/or unfavorable Franck-Condon factors upon ionization. Experimentally, we used VUV radiation available at the DESIRS beamline of the synchrotron radiation facility SOLEIL to record the threshold photoelectron spectrum of this molecule between 8 and 11 eV. This spectrum consists of a well-resolved band assigned mainly to vibronic levels of the D0 cationic state, plus a contribution from the D1 state, and two large bands corresponding to the D1, D2 and D3 electronically excited states. The adiabatic ionization energy of 9MA is measured at 8.097 ± 0.005 eV in close agreement with the computed value using the explicitly correlated coupled cluster approach including core valence, scalar relativistic and zero-point vibrational energy corrections. This work sheds light on the complex pattern of the lowest doublet electronic states of 9MA+. The comparison to canonical adenine reveals that methylation induces further electronic structure complication that may be important to understand the effects of ionizing radiation and the charge distribution in these biological entities at different time scales.


Assuntos
Adenina , Vibração , Adenina/análogos & derivados , Cátions , Espectroscopia Fotoeletrônica
2.
J Chem Phys ; 157(4): 044306, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35922349

RESUMO

Using a magnetic bottle multi-electron time-of-flight spectrometer in combination with synchrotron radiation, double-core-hole pre-edge and continuum states involving the K-shell of the carbon atoms in n-butane (n-C4H10) have been identified, where the ejected core electron(s) and the emitted Auger electrons from the decay of such states have been detected in coincidence. An assignment of the main observed spectral features is based on the results of multi-configurational self-consistent field (MCSCF) calculations for the excitation energies and static exchange (STEX) calculations for energies and intensities. MCSCF results have been analyzed in terms of static and dynamic electron relaxation as well as electron correlation contributions to double-core-hole state ionization potentials. The analysis of applicability of the STEX method, which implements the one-particle picture toward the complete basis set limit, is motivated by the fact that it scales well toward large species. We find that combining the MCSCF and STEX techniques is a viable approach to analyze double-core-hole spectra.

3.
Phys Rev Lett ; 127(9): 093201, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34506185

RESUMO

Clusters and nanodroplets hold the promise of enhancing high-order nonlinear optical effects due to their high local density. However, only moderate enhancement has been demonstrated to date. Here, we report the observation of energetic electrons generated by above-threshold ionization (ATI) of helium (He) nanodroplets which are resonantly excited by ultrashort extreme ultraviolet (XUV) free-electron laser pulses and subsequently ionized by near-infrared (NIR) or near-ultraviolet (UV) pulses. The electron emission due to high-order ATI is enhanced by several orders of magnitude compared with He atoms. The crucial dependence of the ATI intensities with the number of excitations in the droplets suggests a local collective enhancement effect.

4.
Phys Chem Chem Phys ; 23(18): 10780-10790, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33908498

RESUMO

Using synchrotron radiation in the tender X-ray regime, a photoelectron spectrum showing the formation of single site double-core-hole pre-edge states, involving the K shell of the O atom in CO, has been recorded by means of high-resolution electron spectroscopy. The experimentally observed structures have been simulated, interpreted and assigned, employing state-of-the-art ab initio quantum chemical calculations, on the basis of a theoretical model, accounting for their so-called direct or conjugate character. Features appearing above the double ionization threshold have been reproduced by taking into account the strong mixing between multi-excited and continuum states. The shift of the σ* resonance below the double ionization threshold, in combination with the non-negligible contributions of multi-excited configurations in the final states reached, gives rise to a series of avoided crossings between the different potential energy curves.

5.
Phys Chem Chem Phys ; 21(19): 9889-9894, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31038513

RESUMO

Systematic measurements on single and triple Auger decay in CO and CO2 after the creation of a C 1s or a O 1s core vacancy show that the percentage of triple Auger decay is on the order of 10-2 of the single Auger decay in these molecules. The fractions of triple Auger decay are compared with triple Auger fractions for carbon atoms and some noble gas atoms, and are found to follow a linear trend correlated to the number of valence electrons on the atom with the initial core vacancy and on its closest neighbours. This linear trend for the percentage of triple Auger decay is represented by a predictive equation TA = 0.13·Nve - 0.5.

6.
J Chem Phys ; 151(11): 114301, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31542004

RESUMO

The triple ionization of HCl by double Auger decay and related processes has been studied using a multiparticle coincidence technique combined with synchrotron radiation. Four contributing processes are identified; direct double Auger, two indirect double Auger decay pathways, and single Auger decay from core-valence doubly ionized intermediate states. One indirect Auger process involves autoionization from superexcited states of Cl+. Double Auger decay from HCl+ (2p-1, 2PJ), which makes up 11% ± 2% of total Auger decay, is estimated to be 40% direct, 15% indirect via atomic Cl+* and 45% indirect via molecular intermediate doubly ionized states. The vertical triple ionization energy of HCl is determined as 73.8 ± 0.5 eV. Molecular field effects are found to affect the direct double Auger process as well as normal single Auger decay. A comparison between spectra of the HCl and DCl isotopomers indicates that electronic decay is faster in all the processes than molecular dissociation.

7.
Phys Chem Chem Phys ; 20(4): 2724-2730, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29322146

RESUMO

The formation of double core hole pre-edge states of the form 1s-12p-1(1,3P)σ*,nl for HCl, located on the binding energy scale as deep as 3 keV, has been investigated by means of a high resolution single channel electron spectroscopy technique recently developed for the hard X-ray region. A detailed spectroscopic assignment is performed based on ab initio quantum chemical calculations and by using a sophisticated fit model comprising regular Rydberg series. Quantum defects for the different Rydberg series are extracted and the energies for the associated double core hole ionization continua are extrapolated. Dynamical information such as the lifetime width of these double-core-hole pre-edge states and the slope of the related dissociative potential energy curves are also obtained. In addition, 1s-12p-1V-1nlλn'l'λ' double shake-up transitions and double core hole states of the form 1s-12s-1(1,3S)σ*,4s are observed.

8.
J Chem Phys ; 149(20): 204307, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30501256

RESUMO

Energy selected and mass-resolved electron-ion coincidence spectra of heavy water have been recorded for ionization energies from 18 to 35 eV. Dissociation from the B2B2 state produces both O+ and D2 + at energies near their thermodynamic thresholds in addition to the known products D+ and OD+. The relative yields of O+, OD+, and D+ in the B2B2 state breakdown diagram are modulated by the vibrational structure of the B-state population, implying incomplete energy equilibration before fragmentation. Decay from the C-state produces OD+ in addition to the known O+ and D+. The fragment kinetic energies suggest that O+ and D+ from the C state are the products of full atomization of the molecule.

9.
J Chem Phys ; 149(13): 134313, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30292205

RESUMO

Spectra reflecting the formation of single-site double-core-hole pre-edge states involving the N 1s and C 1s core levels of acetonitrile have been recorded by means of high-resolution single-channel photoelectron spectroscopy using hard X-ray excitation. The data are interpreted with the aid of ab initio quantum chemical calculations, which take into account the direct or conjugate nature of this type of electronic states. Furthermore, the photoelectron spectra of N 1s and C 1s singly core-ionized states have been measured. From these spectra, the chemical shift between the two C 1s-1 states is estimated. Finally, by utilizing C 1s single and double core-ionization potentials, initial and final state effects for the two inequivalent carbon atoms have been investigated.

10.
Phys Rev Lett ; 117(13): 133001, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27715102

RESUMO

Using synchrotron radiation and high-resolution electron spectroscopy, we have directly observed and identified specific photoelectrons from K^{-2}V states in neon corresponding to simultaneous 1s ionization and 1s→valence excitation. The natural lifetime broadening of the K^{-2}V states and the relative intensities of different types of shakeup channels have been determined experimentally and compared to ab initio calculations. Moreover, the high-energy Auger spectrum resulting from the decay of Ne^{2+}K^{-2} and Ne^{+}K^{-2}V states as well as from participator Auger decay from Ne^{+}K^{-1}L^{-1}V states, has been measured and assigned in detail utilizing the characteristic differences in lifetime broadenings of these core hole states. Furthermore, post collision interaction broadening of Auger peaks is clearly observed only in the hypersatellite spectrum from K^{-2} states, due to the energy sharing between the two 1s photoelectrons which favors the emission of one slow and one fast electron.

11.
Phys Chem Chem Phys ; 18(36): 25705-25710, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27711372

RESUMO

We show that the proportion of double Auger decay following creation of single 1s core holes in molecules containing C, N and O atoms is greater than usually assumed, amounting to about 10% of single Auger decay in many cases. It varies from molecule to molecule, where the size of the molecule has a positive correlation to the amount of double Auger decay. In neon, examined as a related benchmark, the proportion of double Auger decay is similar to that in methane, and is in the order of 5%.

12.
Phys Chem Chem Phys ; 18(4): 2535-47, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26700657

RESUMO

Core-valence double ionisation spectra of acetaldehyde (ethanal) are presented at photon energies above the carbon and oxygen 1s ionisation edges, measured by a versatile multi-electron coincidence spectroscopy technique. We use this molecule as a testbed for analyzing core-valence spectra by means of quantum chemical calculations of transition energies. These theoretical approaches range from two simple models, one based on orbital energies corrected by core valence interaction and one based on the equivalent core approximation, to a systematic series of quantum chemical electronic structure methods of increasing sophistication. The two simple models are found to provide a fast orbital interpretation of the spectra, in particular in the low energy parts, while the coverage of the full spectrum is best fulfilled by correlated models. CASPT2 is the most sophisticated model applied, but considering precision as well as computational costs, the single and double excitation configuration interaction model seems to provide the best option to analyze core-valence double hole spectra.

13.
J Chem Phys ; 145(7): 074303, 2016 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-27544101

RESUMO

The fragmentations of iodine cyanide ions created with 2 to 8 positive charges by photoionization from inner shells with binding energies from 59 eV (I 4d) to ca. 900 eV (I 3p) have been examined by multi-electron and multi-ion coincidence spectroscopy with velocity map imaging ion capability. The charge distributions produced by hole formation in each shell are characterised and systematic effects of the number of charges and of initial charge localisation are found.

14.
J Phys Chem A ; 119(45): 11105-12, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26490385

RESUMO

A series of different alkyl vinyl ethers is investigated to decipher the possible reaction channels upon photoexcitation to the π3s-Rydberg and the ππ*-valence state at 200 nm using time-resolved photoelectron spectroscopy and on-the-fly time-dependent density functional theory dynamics simulations. The results indicate two possible relaxation pathways: (1) a radiationless decay through the ππ*-state back to the ground state via torsion of the C═C double bond, in accordance with the dynamics found in ethylene; and (2) a fast dissociation of the C-O bond between the alkyl and the vinoxy group in the πσ*-state. The latter state can be accessed only after excitation to the π3s-Rydberg state (quantum yield of ∼50% according to the dynamics simulations). Additionally, the excited state barrier leading to formation of a vinyl radical was found to be too high to be crossed. These results indicate that the dynamics of ethers crucially depend on the excitation wavelength and that the πσ*-state constitutes an important competitive reaction channel that leads to dissociation of the molecules.

15.
Phys Rev Lett ; 113(19): 193201, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25415905

RESUMO

Seeded free electron lasers theoretically have the intensity, tunability, and resolution required for multiphoton spectroscopy of atomic and molecular species. Using the seeded free electron laser FERMI and a novel detection scheme, we have revealed the two-photon excitation spectra of dipole-forbidden doubly excited states in helium. The spectral profiles of the lowest (-1,0)(+1) (1)S(e) and (0,1)(0) (1)D(e) resonances display energy shifts in the meV range that depend on the pulse intensity. The results are explained by an effective two-level model based on calculated Rabi frequencies and decay rates.

16.
J Chem Phys ; 140(18): 184305, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24832268

RESUMO

Multi-coincidence experiments with detection of both electrons and ions from decay of core-excited and core-ionized states of CO2 confirm that O2(+) is formed specifically in Auger decay from the C1s-π* and O1s-π* resonances. Molecular rearrangement occurs by bending in the resonant states, and O2(+) is produced by both single and double Auger decay. It is suggested that electron capture by C(+) after partial dissociation in the doubly ionized core of excited CO2(+), formed by shake-up in spectator resonant Auger decay, accounts for high kinetic energy and high internal energy in some C + O2(+) fragments.

17.
J Chem Phys ; 140(4): 044309, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25669525

RESUMO

Single-site N1s and O1s double core ionisation of the NO and N2O molecules has been studied using a magnetic bottle many-electron coincidence time-of-flight spectrometer at photon energies of 1100 eV and 1300 eV. The double core hole energies obtained for NO are 904.8 eV (N1s(-2)) and 1179.4 eV (O1s(-2)). The corresponding energies obtained for N2O are 896.9 eV (terminal N1s(-2)), 906.5 eV (central N1s(-2)), and 1174.1 eV (O1s(-2)). The ratio between the double and single ionisation energies are in all cases close or equal to 2.20. Large chemical shifts are observed in some cases which suggest that reorganisation of the electrons upon the double ionization is significant. Δ-self-consistent field and complete active space self-consistent field (CASSCF) calculations were performed for both molecules and they are in good agreement with these results. Auger spectra of N2O, associated with the decay of the terminal and central N1s(-2) as well as with the O1s(-2) dicationic states, were extracted showing the two electrons emitted as a result of filling the double core holes. The spectra, which are interpreted using CASSCF and complete active space configuration interaction calculations, show atomic-like character. The cross section ratio between double and single core hole creation was estimated as 1.6 × 10(-3) for nitrogen at 1100 eV and as 1.3 × 10(-3) for oxygen at 1300 eV.

18.
Phys Rev Lett ; 110(17): 173005, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23679721

RESUMO

We have investigated multiphoton multiple ionization dynamics of xenon atoms using a new x-ray free-electron laser facility, SPring-8 Angstrom Compact free electron LAser (SACLA) in Japan, and identified that Xe(n+) with n up to 26 is produced at a photon energy of 5.5 keV. The observed high charge states (n≥24) are produced via five-photon absorption, evidencing the occurrence of multiphoton absorption involving deep inner shells. A newly developed theoretical model, which shows good agreement with the experiment, elucidates the complex pathways of sequential electronic decay cascades accessible in heavy atoms. The present study of heavy-atom ionization dynamics in high-intensity hard-x-ray pulses makes a step forward towards molecular structure determination with x-ray free-electron lasers.

19.
Phys Rev Lett ; 111(7): 073002, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23992061

RESUMO

When exposed to ultraintense x-radiation sources such as free electron lasers (FELs) the innermost electronic shell can efficiently be emptied, creating a transient hollow atom or molecule. Understanding the femtosecond dynamics of such systems is fundamental to achieving atomic resolution in flash diffraction imaging of noncrystallized complex biological samples. We demonstrate the capacity of a correlation method called "partial covariance mapping" to probe the electron dynamics of neon atoms exposed to intense 8 fs pulses of 1062 eV photons. A complete picture of ionization processes competing in hollow atom formation and decay is visualized with unprecedented ease and the map reveals hitherto unobserved nonlinear sequences of photoionization and Auger events. The technique is particularly well suited to the high counting rate inherent in FEL experiments.

20.
Struct Dyn ; 10(5): 054302, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37799711

RESUMO

Dynamical response of water exposed to x-rays is of utmost importance in a wealth of science areas. We exposed isolated water isotopologues to short x-ray pulses from a free-electron laser and detected momenta of all produced ions in coincidence. By combining experimental results and theoretical modeling, we identify significant structural dynamics with characteristic isotope effects in H2O2+, D2O2+, and HDO2+, such as asymmetric bond elongation and bond-angle opening, leading to two-body or three-body fragmentation on a timescale of a few femtoseconds. A method to disentangle the sequences of events taking place upon the consecutive absorption of two x-ray photons is described. The obtained deep look into structural properties and dynamics of dissociating water isotopologues provides essential insights into the underlying mechanisms.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa