Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36993336

RESUMO

The energy-burning capability of beige adipose tissue is a potential therapeutic tool for reducing obesity and metabolic disease, but this capacity is decreased by aging. Here, we evaluate the impact of aging on the profile and activity of adipocyte stem and progenitor cells (ASPCs) and adipocytes during the beiging process. We found that aging increases the expression of Cd9 and other fibro-inflammatory genes in fibroblastic ASPCs and blocks their differentiation into beige adipocytes. Fibroblastic ASPC populations from young and aged mice were equally competent for beige differentiation in vitro, suggesting that environmental factors suppress adipogenesis in vivo. Examination of adipocytes by single nucleus RNA-sequencing identified compositional and transcriptional differences in adipocyte populations with age and cold exposure. Notably, cold exposure induced an adipocyte population expressing high levels of de novo lipogenesis (DNL) genes, and this response was severely blunted in aged animals. We further identified natriuretic peptide clearance receptor Npr3, a beige fat repressor, as a marker gene for a subset of white adipocytes and an aging-upregulated gene in adipocytes. In summary, this study indicates that aging blocks beige adipogenesis and dysregulates adipocyte responses to cold exposure and provides a unique resource for identifying cold and aging-regulated pathways in adipose tissue.

2.
Elife ; 122024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775132

RESUMO

The energy-burning capability of beige adipose tissue is a potential therapeutic tool for reducing obesity and metabolic disease, but this capacity is decreased by aging. Here, we evaluate the impact of aging on the profile and activity of adipocyte stem and progenitor cells (ASPCs) and adipocytes during the beiging process in mice. We found that aging increases the expression of Cd9 and other fibro-inflammatory genes in fibroblastic ASPCs and blocks their differentiation into beige adipocytes. Fibroblastic ASPC populations from young and aged mice were equally competent for beige differentiation in vitro, suggesting that environmental factors suppress adipogenesis in vivo. Examination of adipocytes by single nucleus RNA-sequencing identified compositional and transcriptional differences in adipocyte populations with aging and cold exposure. Notably, cold exposure induced an adipocyte population expressing high levels of de novo lipogenesis (DNL) genes, and this response was severely blunted in aged animals. We further identified Npr3, which encodes the natriuretic peptide clearance receptor, as a marker gene for a subset of white adipocytes and an aging-upregulated gene in adipocytes. In summary, this study indicates that aging blocks beige adipogenesis and dysregulates adipocyte responses to cold exposure and provides a resource for identifying cold and aging-regulated pathways in adipose tissue.


Assuntos
Adipócitos Bege , Adipogenia , Envelhecimento , Temperatura Baixa , Animais , Adipogenia/genética , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Camundongos , Adipócitos Bege/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Adipócitos/metabolismo , Diferenciação Celular , Reprogramação Celular , Reprogramação Metabólica
3.
Dev Cell ; 58(21): 2195-2205.e5, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37647897

RESUMO

Brown adipose tissue (BAT) is a thermogenic organ that protects animals against hypothermia and obesity. BAT derives from the multipotent paraxial mesoderm; however, the identity of embryonic brown fat progenitor cells and regulators of adipogenic commitment are unclear. Here, we performed single-cell gene expression analyses of mesenchymal cells during mouse embryogenesis with a focus on BAT development. We identified cell populations associated with the development of BAT, including Dpp4+ cells that emerge at the onset of adipogenic commitment. Immunostaining and lineage-tracing studies show that Dpp4+ cells constitute the BAT fascia and contribute minorly as adipocyte progenitors. Additionally, we identified the transcription factor GATA6 as a marker of brown adipogenic progenitor cells. Deletion of Gata6 in the brown fat lineage resulted in a striking loss of BAT. Together, these results identify progenitor and transitional cells in the brown adipose lineage and define a crucial role for GATA6 in BAT development.


Assuntos
Adipócitos Marrons , Dipeptidil Peptidase 4 , Animais , Camundongos , Adipócitos Marrons/metabolismo , Adipogenia , Tecido Adiposo Marrom/metabolismo , Dipeptidil Peptidase 4/metabolismo , Obesidade/metabolismo , Termogênese/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa