Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genomics Proteomics Bioinformatics ; 19(4): 652-661, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34284136

RESUMO

Chromatin immunoprecipitation sequencing (ChIP-seq) and the Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) have become essential technologies to effectively measure protein-DNA interactions and chromatin accessibility. However, there is a need for a scalable and reproducible pipeline that incorporates proper normalization between samples, correction of copy number variations, and integration of new downstream analysis tools. Here we present Containerized Bioinformatics workflow for Reproducible ChIP/ATAC-seq Analysis (CoBRA), a modularized computational workflow which quantifies ChIP-seq and ATAC-seq peak regions and performs unsupervised and supervised analyses. CoBRA provides a comprehensive state-of-the-art ChIP-seq and ATAC-seq analysis pipeline that can be used by scientists with limited computational experience. This enables researchers to gain rapid insight into protein-DNA interactions and chromatin accessibility through sample clustering, differential peak calling, motif enrichment, comparison of sites to a reference database, and pathway analysis. CoBRA is publicly available online at https://bitbucket.org/cfce/cobra.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Biologia Computacional , Cromatina/genética , Variações do Número de Cópias de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Fluxo de Trabalho
2.
Sci Adv ; 6(25): eabb2210, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32704543

RESUMO

Inhibitors of cyclin-dependent kinases CDK4 and CDK6 have been approved for treatment of hormone receptor-positive breast cancers. In contrast, triple-negative breast cancers (TNBCs) are resistant to CDK4/6 inhibition. Here, we demonstrate that a subset of TNBC critically requires CDK4/6 for proliferation, and yet, these TNBC are resistant to CDK4/6 inhibition due to sequestration of CDK4/6 inhibitors into tumor cell lysosomes. This sequestration is caused by enhanced lysosomal biogenesis and increased lysosomal numbers in TNBC cells. We developed new CDK4/6 inhibitor compounds that evade the lysosomal sequestration and are efficacious against resistant TNBC. We also show that coadministration of lysosomotropic or lysosome-destabilizing compounds (an antibiotic azithromycin, an antidepressant siramesine, an antimalaria compound chloroquine) renders resistant tumor cells sensitive to currently used CDK4/6 inhibitors. Lastly, coinhibition of CDK2 arrested proliferation of CDK4/6 inhibitor-resistant cells. These observations may extend the use of CDK4/6 inhibitors to TNBCs that are refractory to current anti-CDK4/6 therapies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa