Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nitric Oxide ; 46: 25-31, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25461269

RESUMO

Hydrogen sulfide exerts a number of cytoprotective and anti-inflammatory effects in many organ systems. In an effort to exploit these potent and beneficial effects, a number of hydrogen sulfide-releasing derivatives of existing drugs have been developed and extensively tested in pre-clinical models. In particular, efforts have been made by several groups to develop hydrogen sulfide-releasing derivatives of a number of nonsteroidal anti-inflammatory drugs. The main goal of this approach is to reduce the gastrointestinal ulceration and bleeding caused by this class of drugs, particularly when used chronically such as in the treatment of arthritis. However, these drugs may also have utility for prevention of various types of cancer. This paper provides an overview of some of the mechanisms underlying the anti-inflammatory and cytoprotective actions of hydrogen sulfide. It also gives some examples of hydrogen sulfide-releasing anti-inflammatory drugs, and their actions in terms of reducing inflammation and attenuating the development of cancer in experimental models.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Sulfeto de Hidrogênio/química , Sulfeto de Hidrogênio/farmacologia , Substâncias Protetoras/farmacologia , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacocinética , Antineoplásicos/química , Antineoplásicos/farmacocinética , Descoberta de Drogas , Humanos , Sulfeto de Hidrogênio/farmacocinética , Substâncias Protetoras/química , Substâncias Protetoras/farmacocinética
2.
Front Physiol ; 14: 1055706, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441000

RESUMO

Aedes aegypti (Ae. aegypti) saliva induces a variety of anti-inflammatory and immunomodulatory activities. Interestingly, although it is known that mosquito bites cause allergic reactions in sensitised hosts, the primary exposure of humans to Ae. aegypti does not evoke significant itching. Whether active components in the saliva of Ae. aegypti can counteract the normal itch reaction to injury produced by a histaminergic or non-histaminergic pathway in vertebrate hosts is unknown. This study investigated the effects of Ae. aegypti mosquito salivary gland extract (SGE) on sensitive reactions such as itching and associated skin inflammation. Acute pruritus and plasma extravasation were induced in mice by the intradermal injection of either compound 48/80 (C48/80), the Mas-related G protein-coupled receptor (Mrgpr) agonist chloroquine (CQ), or the transient receptor potential ankyrin 1 (TRPA1) agonist allyl isothiocyanate (AITC). The i.d. co-injection of Ae. aegypti SGE inhibited itching, plasma extravasation, and neutrophil influx evoked by C48/80, but it did not significantly affect mast cell degranulation in situ or in vitro. Additionally, SGE partially reduced CQ- and AITC-induced pruritus in vivo, suggesting that SGE affects pruriceptive nerve firing independently of the histaminergic pathway. Activation of TRPA1 significantly increased intracellular Ca2+ in TRPA-1-transfected HEK293t lineage, which was attenuated by SGE addition. We showed for the first time that Ae. aegypti SGE exerts anti-pruriceptive effects, which are partially regulated by the histamine-independent itch TRPA1 pathway. Thus, SGE may possess bioactive molecules with therapeutic potential for treating nonhistaminergic itch.

3.
Sci Rep ; 8(1): 11013, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-30030460

RESUMO

We investigated the effect of the crude herbal extract from Uncaria tomentosa (UT) on non-alcoholic fatty liver disease (NAFLD) in two models of obesity: high fat diet (HFD) and genetically obese (ob/ob) mice. Both obese mouse models were insulin resistant and exhibited an abundance of lipid droplets in the hepatocytes and inflammatory cell infiltration in the liver, while only the HFD group had collagen deposition in the perivascular space of the liver. UT treatment significantly reduced liver steatosis and inflammation in both obese mouse models. Furthermore, serine phosphorylation of IRS-1 was reduced by 25% in the HFD mice treated with UT. Overall, UT treated animals exhibited higher insulin sensitivity as compared to vehicle administration. In conclusion, Uncaria tomentosa extract improved glucose homeostasis and reverted NAFLD to a benign hepatic steatosis condition and these effects were associated with the attenuation of liver inflammation in obese mice.


Assuntos
Unha-de-Gato/metabolismo , Resistência à Insulina/fisiologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Insulina/farmacologia , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade/fisiopatologia , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa