Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Neurol ; 15: 1325222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343710

RESUMO

Introduction: Tubular aggregates (TA) are skeletal muscle structures that arise from the progressive accumulation of sarcoplasmic reticulum proteins. Cytoplasmic aggregates in muscle fibers have already been observed in mice and humans, mainly during aging and muscle disease processes. However, the effects of muscle regeneration on TA formation have not yet been reported. This study aimed to investigate the relationship between degeneration/regeneration and TA in aged murine models. We investigated the presence and quantity of TA in old males from two murine models with intense muscle degeneration and regeneration. Methods: One murine lineage was a Dmdmdx model of Duchenne muscular dystrophy (n = 6). In the other model, muscle damage was induced by electroporation in C57BL/6J wild-type mice, and analyzed after 5, 15, and 30 days post-electroporation (dpe; n = 15). Regeneration was evaluated based on the quantity of developmental myosin heavy chain (dMyHC)-positive fibers. Results: The frequency of fibers containing TA was higher in aged C57BL/6J (26 ± 8.3%) than in old dystrophic Dmdmdx mice (2.4 ± 2%). Comparing the data from induced degeneration/regeneration in normal mice revealed a reduced proportion of TA-containing fibers after 5 and 30 dpe. Normal aged muscle was able to regenerate and form dMyHC+ fibers, mainly at 5 dpe (0.1 ± 0.1 vs. 16.5 ± 2.6%). However, there was no difference in force or resistance between normal and 30 dpe animals, except for the measurements by the Actimeter device, which showed the worst parameters in the second group. Discussion: Our results suggest that TA also forms in the Dmdmdx muscle but in smaller amounts. The intense degeneration and regeneration of the old dystrophic model resulted in the generation of new muscle fibers with a lower quantity of TA. Data from electroporated wild-type mice support the idea that muscle regeneration leads to a reduction in the amount of TA. We suggest that TA accumulates in muscle fibers throughout physiological aging and that regeneration leads to the formation of new fibers without these structures. In addition, these new fibers do not confer functional benefits to the muscle.

2.
Genes (Basel) ; 13(5)2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35627144

RESUMO

Central Core Disease (CCD) is a genetic neuromuscular disorder characterized by the presence of cores in muscle biopsy. The inheritance has been described as predominantly autosomal dominant (AD), and the disease may present as severe neonatal or mild adult forms. Here we report clinical and molecular data on a large cohort of Brazilian CCD patients, including a retrospective clinical analysis and molecular screening for RYR1 variants using Next-Generation Sequencing (NGS). We analyzed 27 patients from 19 unrelated families: four families (11 patients) with autosomal dominant inheritance (AD), two families (3 patients) with autosomal recessive (AR), and 13 sporadic cases. Biallelic RYR1 variants were found in six families (two AR and four sporadic cases) of the 14 molecularly analyzed families (~43%), suggesting a higher frequency of AR inheritance than expected. None of these cases presented a severe phenotype. Facial weakness was more common in biallelic than in monoallelic patients (p = 0.0043) and might be a marker for AR forms. NGS is highly effective for the identification of RYR1 variants in CCD patients, allowing the discovery of a higher proportion of AR cases with biallelic mutations. These data have important implications for the genetic counseling of the families.


Assuntos
Miopatia da Parte Central , Neuroblastoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Miopatia da Parte Central/genética , Miopatia da Parte Central/patologia , Linhagem , Estudos Retrospectivos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa