Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Curr Issues Mol Biol ; 44(2): 654-669, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35723331

RESUMO

The effect of confined and isolated experience on astronauts' health is an important factor to consider for future space exploration missions. The more confined and isolated humans are, the more likely they are to develop negative behavioral or cognitive conditions such as a mood decline, sleep disorder, depression, fatigue and/or physiological problems associated with chronic stress. Molecular mediators of chronic stress, such as cytokines, stress hormones or reactive oxygen species (ROS) are known to induce cellular damage including damage to the DNA. In view of the growing evidence of chronic stress-induced DNA damage, we conducted an explorative study and measured DNA strand breaks in 20 healthy adults. The participants were grouped into five teams (missions). Each team was composed of four participants, who spent 45 days in isolation and confinement in NASA's Human Exploration Research Analog (HERA). Endogenous DNA integrity, ex-vivo radiation-induced DNA damage and the rates of DNA repair were assessed every week. Our results show a high inter-individual variability as well as differences between the missions, which cannot be explained by inter-individual variability alone. The ages and sex of the participants did not appear to influence the results.

2.
Int J Mol Sci ; 19(11)2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30469384

RESUMO

The implementation of rotating-wall vessels (RWVs) for studying the effect of lack of gravity has attracted attention, especially in the fields of stem cells, tissue regeneration, and cancer research. Immune cells incubated in RWVs exhibit several features of immunosuppression including impaired leukocyte proliferation, cytokine responses, and antibody production. Interestingly, stress hormones influence cellular immune pathways affected by microgravity, such as cell proliferation, apoptosis, DNA repair, and T cell activation. These pathways are crucial defense mechanisms that protect the cell from toxins, pathogens, and radiation. Despite the importance of the adrenergic receptor in regulating the immune system, the effect of microgravity on the adrenergic system has been poorly studied. Thus, we elected to investigate the synergistic effects of isoproterenol (a sympathomimetic drug), radiation, and microgravity in nonstimulated immune cells. Peripheral blood mononuclear cells were treated with the sympathomimetic drug isoproterenol, exposed to 0.8 or 2 Gy γ-radiation, and incubated in RWVs. Mixed model regression analyses showed significant synergistic effects on the expression of the ß2-adrenergic receptor gene (ADRB2). Radiation alone increased ADRB2 expression, and cells incubated in microgravity had more DNA strand breaks than cells incubated in normal gravity. We observed radiation-induced cytokine production only in microgravity. Prior treatment with isoproterenol clearly prevents most of the microgravity-mediated effects. RWVs may be a useful tool to provide insight into novel regulatory pathways, providing benefit not only to astronauts but also to patients suffering from immune disorders or undergoing radiotherapy.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Reparo do DNA , Raios gama , Isoproterenol/farmacologia , Leucócitos/imunologia , Ausência de Peso , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Humanos , Leucócitos/efeitos dos fármacos , Leucócitos/efeitos da radiação , Ativação Linfocitária , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo
3.
Int J Mol Sci ; 19(10)2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30274169

RESUMO

Among the many stressors astronauts are exposed to during spaceflight, cosmic radiation may lead to various serious health effects. Specifically, space radiation may contribute to decreased immunity, which has been documented in astronauts during short- and long-duration missions, as evidenced by several changes in cellular immunity and plasma cytokine levels. Reactivation of latent herpes viruses, either directly from radiation of latently infected cells and/or from perturbation of the immune system, may result in disease in astronauts. Epstein‒Barr virus (EBV) is one of the eight human herpes viruses known to infect more than 90% of human adults and persists for the life of the host without normally causing adverse effects. Reactivation of several latent viruses in astronauts is well documented, although the mechanism of reactivation is not well understood. We studied the effect of four different types of radiation, (1) 137Cs gamma rays, (2) 150-MeV protons, (3) 600 MeV/n carbon ions, and (4) 600 MeV/n iron ions on the activation of lytic gene transcription and of reactivation of EBV in a latently infected cell line (Akata) at doses of 0.1, 0.5, 1.0, and 2.0 Gy. The data showed that for all doses used in this study, lytic gene transcription was induced and median viral loads were significantly higher for all types of radiation than in corresponding control samples, with the increases detected as early as four days post-exposure and generally tapering off at later time points. The viability and size of EBV-infected Akata cells were highly variable and exhibited approximately the same trend in time for all radiation types at 0.1, 0.5, 1.0, and 2.0 Gy. This work shows that reactivation of viruses can occur due to the effect of different types of radiation on latently infected cells in the absence of changes or cytokines produced in the immune system. In general, gamma rays are more effective than protons, carbon ions, and iron ions in inducing latent virus reactivation, though these high-energy particles did induce more sustained and later reactivation of EBV lytic gene transcription. These findings also challenge the common relative biological effectiveness concept that is often used in radiobiology for other end points.


Assuntos
Carbono/química , Raios gama , Herpesvirus Humano 4/fisiologia , Herpesvirus Humano 4/efeitos da radiação , Ferro/química , Prótons , Ativação Viral/efeitos da radiação , Latência Viral/efeitos da radiação , Linhagem Celular , Tamanho Celular/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Humanos , Fótons , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Carga Viral/efeitos da radiação
5.
Aviat Space Environ Med ; 84(7): 661-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23855060

RESUMO

INTRODUCTION: The fitting of probabilistic decompression sickness (DCS) models is more effective when data encompass a wide range of DCS incidence. We obtained such data from the Air Force Research Laboratory Altitude Decompression Sickness Research Database. The data are results from 29 tests comprising 708 human altitude chamber exposures (536 men and 172 women). There were 340 DCS outcomes with per-test DCS incidence ranging from 0 to 88%. The tests were characterized by direct ascent at a rate of 5000 ft x min(-1) (1524 m x min(-1)) to a range of altitudes (226 to 378 mmHg) for 4 h after prebreathe times of varying length and with varying degrees of physical activity while at altitude. METHODS: Logistic regression was used to develop an expression for the probability of DCS [P(DCS)] using the Hill equation with decompression dose as the main predictor. Here, decompression dose is defined in terms of either the tissue ratio (TR) or a bubble growth index (BGI). Other predictors in the model were gender and peak exercise intensity at altitude. RESULTS: All three predictors (decompression dose, gender, and exercise intensity) were important contributions to the model for P(DCS). DISCUSSION: Higher TR or BGI, male gender, and higher exercise intensity at altitude all increased the modeled decompression dose. Using either TR or BGI to define decompression dose provided comparable results, suggesting that a simple TR is adequate for simple altitude exposures as an abstraction of the true decompression dose. The model is primarily heuristic and limits estimates of P(DCS) to only a 4-h exposure.


Assuntos
Altitude , Doença da Descompressão/epidemiologia , Esforço Físico , Feminino , Humanos , Modelos Logísticos , Masculino , Militares , Consumo de Oxigênio/fisiologia , Probabilidade , Fatores Sexuais
6.
NPJ Microgravity ; 9(1): 11, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737441

RESUMO

Exercise training is a key countermeasure used to offset spaceflight-induced multisystem deconditioning. Here, we evaluated the effects of exercise countermeasures on multisystem function in a large cohort (N = 46) of astronauts on long-duration spaceflight missions. We found that during 178 ± 48 d of spaceflight, ~600 min/wk of aerobic and resistance exercise did not fully protect against multisystem deconditioning. However, substantial inter-individual heterogeneity in multisystem response was apparent with changes from pre to postflight ranging from -30% to +5%. We estimated that up to 17% of astronauts would experience performance-limiting deconditioning if current exercise countermeasures were used on future spaceflight missions. These findings support the need for refinement of current countermeasures, adjunct interventions, or enhanced requirements for preflight physiologic and functional capacity for the protection of astronaut health and performance during exploration missions to the moon and beyond.

7.
Life (Basel) ; 12(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35207432

RESUMO

One of the major concerns for long-term exploration missions beyond the Earth's magnetosphere is consequences from exposures to solar particle event (SPE) protons and galactic cosmic rays (GCR). For long-term crewed Lunar and Mars explorations, the production of fresh food in space will provide both nutritional supplements and psychological benefits to the astronauts. However, the effects of space radiation on plants and plant propagules have not been sufficiently investigated and characterized. In this study, we evaluated the effect of two different compositions of charged particles-simulated GCR, and simulated SPE protons on dry and hydrated seeds of the model plant Arabidopsis thaliana and the crop plant Mizuna mustard [Brassica rapa var. japonica]. Exposures to charged particles, simulated GCRs (up to 80 cGy) or SPEs (up to 200 cGy), were performed either acutely or at a low dose rate using the NASA Space Radiation Laboratory (NSRL) facility at Brookhaven National Lab (BNL). Control and irradiated seeds were planted in a solid phytogel and grown in a controlled environment. Five to seven days after planting, morphological parameters were measured to evaluate radiation-induced damage in the seedlings. After exposure to single types of charged particles, as well as to simulated GCR, the hydrated Arabidopsis seeds showed dose- and quality-dependent responses, with heavier ions causing more severe defects. Seeds exposed to simulated GCR (dry seeds) and SPE (hydrated seeds) had significant, although much less damage than seeds exposed to heavier and higher linear energy transfer (LET) particles. In general, the extent of damage depends on the seed type.

8.
J Ultrasound Med ; 30(5): 651-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21527613

RESUMO

OBJECTIVES: This study investigated whether it is feasible to use sonography to monitor changes in the optic nerve sheath diameter in a porcine model. METHODS: A fiber-optic intracranial pressure transducer was surgically placed through the frontal sinus directly into the brain parenchyma of adult Yorkshire pigs (n = 5). A second bolt was placed on the contralateral side for intraparenchymal fluid infusion. Optic nerve sheath diameter measurements were acquired by each of 2 ultrasound operators around the leading edge of the nerve, 3 to 5 mm distal from the origin of the optic nerve. To induce a change in diameter, intracranial pressure was manipulated by injecting normal saline into the intraparenchymal infusion catheter located in the symmetric contralateral position as the pressure-monitoring probe. RESULTS: Data from 1 pig were unusable because of a cerebrospinal fluid leak into the sinus and orbital fissure. Saline aliquots of 1 to 10 mL were able to generate intracranial pressures typically starting from 10 to 15 mm Hg and increasing to 75 to 90 mm Hg, which eventually evoked a Cushing response. Fluid injection was controlled to increase pressures by 60 mm Hg over a 15- to 20-minute period. Regression analysis of all animals showed that the optic nerve sheath diameter increased by 0.0034 mm/mm Hg of intracranial pressure; however, this slope ranged from 0.0025 to 0.0046, depending on the animal measured. There was no discernible effect of the ultrasound operator on the slope; however, measurements made by 1 operator were consistently higher than the others by about 8% of the overall diameter range. CONCLUSIONS: These results suggest that the use of the optic nerve sheath diameter to noninvasively confirm acute changes in intracranial pressure over 1 hour is feasible in a porcine model. We recommend that this method be validated in humans using direct intracranial pressure measurement where possible to confirm it as a screening tool for acute and chronically increased diameters secondary to elevated pressure in clinical settings.


Assuntos
Modelos Animais de Doenças , Interpretação de Imagem Assistida por Computador/métodos , Hipertensão Intracraniana/diagnóstico por imagem , Pressão Intracraniana , Nervo Óptico/diagnóstico por imagem , Animais , Feminino , Humanos , Aumento da Imagem/métodos , Hipertensão Intracraniana/fisiopatologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Suínos , Ultrassonografia/métodos
9.
Stat Med ; 29(21): 2246-59, 2010 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-20564417

RESUMO

In an NASA ground study, two forms of cognitive tests were evaluated in terms of their sensitivity to sleepiness induced by the drug promethazine (PMZ). Performance for the two test modes (Y(1) and Y(2)), PMZ concentration, and a self-reported sleepiness using the Karolinska Sleepiness Scale (KSS) were monitored for 12 h post dose. A problem arises when using KSS to establish an association between true sleepiness and performance because KSS scores are discrete and also because they tend to concentrate on certain values. Therefore, we define a latent sleepiness measure X as an unobserved continuous random variable describing a subject's actual state of sleepiness. Under the assumption that drug concentration affects X, which then affects Y(1), Y(2), and KSS, we use Bayesian methods to estimate joint equations that permit unbiased comparison of the performance measures' sensitivity to X. The equations incorporate subject random effects and include a negativity constraint on subject-specific slopes of performance with respect to sleepiness.


Assuntos
Cognição/efeitos dos fármacos , Autoavaliação Diagnóstica , Distúrbios do Sono por Sonolência Excessiva/induzido quimicamente , Distúrbios do Sono por Sonolência Excessiva/diagnóstico , Modelos Estatísticos , Testes Neuropsicológicos , Prometazina/efeitos adversos , Algoritmos , Teorema de Bayes , Estudos Cross-Over , Humanos , Cadeias de Markov , Memória/efeitos dos fármacos , Memória/fisiologia , Método de Monte Carlo , Dinâmica não Linear , Prometazina/sangue , Ensaios Clínicos Controlados Aleatórios como Assunto , Análise de Regressão , Sensibilidade e Especificidade , Fases do Sono/efeitos dos fármacos , Software , Enjoo devido ao Movimento em Voo Espacial/prevenção & controle
10.
Exp Brain Res ; 202(3): 649-59, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20135100

RESUMO

Astronauts returning from space flight and performing Earth-bound activities must rapidly transition from the microgravity-adapted sensorimotor state to that of Earth's gravity. The goal of the current study was to assess locomotor dysfunction and recovery of function after long-duration space flight using a test of functional mobility. Eighteen International Space Station crewmembers experiencing an average flight duration of 185 days performed the functional mobility test (FMT) pre-flight and post-flight. To perform the FMT, subjects walked at a self selected pace through an obstacle course consisting of several pylons and obstacles set up on a base of 10-cm-thick, medium-density foam for a total of six trials per test session. The primary outcome measure was the time to complete the course (TCC, in seconds). To assess the long-term recovery trend of locomotor function after return from space flight, a multilevel exponential recovery model was fitted to the log-transformed TCC data. All crewmembers exhibited altered locomotor function after space flight, with a median 48% increase in the TCC. From the fitted model we calculated that a typical subject would recover to 95% of his/her pre-flight level at approximately 15 days post-flight. In addition, to assess the early motor learning responses after returning from space flight, we modeled performance over the six trials during the first post-flight session by a similar multilevel exponential relation. We found a significant positive correlation between measures of long-term recovery and early motor learning (P < 0.001) obtained from the respective models. We concluded that two types of recovery processes influence an astronaut's ability to re-adapt to Earth's gravity environment. Early motor learning helps astronauts make rapid modifications in their motor control strategies during the first hours after landing. Further, this early motor learning appears to reinforce the adaptive realignment, facilitating re-adaptation to Earth's 1-g environment on return from space flight.


Assuntos
Aprendizagem/fisiologia , Locomoção/fisiologia , Transtornos dos Movimentos/fisiopatologia , Recuperação de Função Fisiológica/fisiologia , Voo Espacial , Ausência de Peso/efeitos adversos , Adulto , Astronautas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos dos Movimentos/etiologia , Transtornos dos Movimentos/reabilitação , Análise e Desempenho de Tarefas , Fatores de Tempo
11.
BMC Cardiovasc Disord ; 10: 28, 2010 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-20565702

RESUMO

BACKGROUND: Resting conventional 12-lead ECG has low sensitivity for detection of coronary artery disease (CAD) and left ventricular hypertrophy (LVH) and low positive predictive value (PPV) for prediction of left ventricular systolic dysfunction (LVSD). We hypothesized that a approximately 5-min resting 12-lead advanced ECG test ("A-ECG") that combined results from both the advanced and conventional ECG could more accurately screen for these conditions than strictly conventional ECG. METHODS: Results from nearly every conventional and advanced resting ECG parameter known from the literature to have diagnostic or predictive value were first retrospectively evaluated in 418 healthy controls and 290 patients with imaging-proven CAD, LVH and/or LVSD. Each ECG parameter was examined for potential inclusion within multi-parameter A-ECG scores derived from multivariate regression models that were designed to optimally screen for disease in general or LVSD in particular. The performance of the best retrospectively-validated A-ECG scores was then compared against that of optimized pooled criteria from the strictly conventional ECG in a test set of 315 additional individuals. RESULTS: Compared to optimized pooled criteria from the strictly conventional ECG, a 7-parameter A-ECG score validated in the training set increased the sensitivity of resting ECG for identifying disease in the test set from 78% (72-84%) to 92% (88-96%) (P < 0.0001) while also increasing specificity from 85% (77-91%) to 94% (88-98%) (P < 0.05). In diseased patients, another 5-parameter A-ECG score increased the PPV of ECG for LVSD from 53% (41-65%) to 92% (78-98%) (P < 0.0001) without compromising related negative predictive value. CONCLUSION: Resting 12-lead A-ECG scoring is more accurate than strictly conventional ECG in screening for CAD, LVH and LVSD.


Assuntos
Doença da Artéria Coronariana/diagnóstico , Eletrocardiografia , Hipertrofia Ventricular Esquerda/diagnóstico , Projetos de Pesquisa , Disfunção Ventricular Esquerda/diagnóstico , Adulto , Idoso , Doença da Artéria Coronariana/fisiopatologia , Eletrocardiografia/métodos , Feminino , Humanos , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade , Disfunção Ventricular Esquerda/fisiopatologia
12.
Aviat Space Environ Med ; 81(6): 566-74, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20540448

RESUMO

INTRODUCTION: Astronauts have complained of back pain occurring during spaceflight, presumably due to the elongation of the spine from the lack of gravity. Herniated nucleus pulposus (HNP) is known to occur in aviators exposed to high Gz and has been diagnosed in several astronauts in the immediate post-spaceflight period. It is unknown whether astronauts exposed to microgravity are at added risk for developing HNP in the post-spaceflight period due to possible in-flight intervertebral disc changes. METHODS: For a preset study period, incidence rates of HNP were compared between the U.S. astronaut population and a matched control population not involved in spaceflight using the Longitudinal Study of Astronaut Health database. Using a Weibull survival model, time trends of the risk of HNP prior to and after spaceflight were compared within the astronaut group. HNP incidences in other populations that have previously been reported in the literature were also compared with results in this study. RESULTS: The incidence of HNP was 4.3 times higher in the U.S. astronaut population (N=321) compared to matched controls (N=983) not involved in spaceflight. For astronauts, there was relatively more HNP in the cervical region of the spine (18 of 44) than for controls (3 of 35); however, there was no clear increase of HNP incidence in those astronauts who were high performance jet aircraft pilots. There was evidence suggesting that the risk is increased immediately after spaceflight. CONCLUSIONS: Astronauts are at higher risk of incurring HNP, especially immediately following spaceflight.


Assuntos
Astronautas , Deslocamento do Disco Intervertebral/etiologia , Dor Lombar/etiologia , Região Lombossacral , Voo Espacial , Ausência de Peso/efeitos adversos , Adulto , Medicina Aeroespacial , Idoso , Estudos de Casos e Controles , Intervalos de Confiança , Bases de Dados Factuais , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Medição de Risco , Fatores de Tempo , Estados Unidos , Adulto Jovem
13.
Aviat Space Environ Med ; 81(7): 625-31, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20597240

RESUMO

INTRODUCTION: Astronauts face transient disruptions of sensorimotor functions after spaceflight. Computerized dynamic posturography (CDP) testing has been used to document functional recovery; however, its objective value in return-to-duty decision-making has not been established. Therefore, we studied the diagnostic accuracy of CDP to determine the most effective test components for probing post-spaceflight sensorimotor deficits. METHODS: There were 11 first-time astronauts and 11 matched controls who were evaluated by CDP before and after spaceflight (controls did not fly). All CDP testing was conducted with eyes closed while standing on a computer-controlled force plate. Somatosensory influences were either unperturbed (stationary force plate) or altered (unstable force plate), and vestibular influences were either unperturbed (head erect) or altered by static (head pitched forward or back by 200) or dynamic (head pitched voluntarily in cadence with an auditory signal: +/- 20 degrees at 0.33 Hz) challenges. Using equilibrium (EQ) scores derived from peak A-P sway as the dependent measure, we determined the sensitivity and specificity of each test condition and then constructed receiver operator characteristic (ROC) curves to determine their diagnostic accuracies. RESULTS: The greatest diagnostic accuracy was obtained from the test requiring the subject to make dynamic head movements while standing on an unstable force plate (94.9% sensitivity 96.6% specificity, area under ROC curve = 0.991). By contrast, the estimated ROC area for the standard clinical Romberg test (fixed support, head erect), which is often used to make postflight return-to-duty decisions, was 0.718. CONCLUSION: We recommend that results from this test paradigm be considered during postflight return-to-duty decision-making.


Assuntos
Astronautas , Equilíbrio Postural/fisiologia , Recuperação de Função Fisiológica/fisiologia , Voo Espacial , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Curva ROC , Sensibilidade e Especificidade
14.
Front Physiol ; 11: 784, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765292

RESUMO

The incidence of presyncopal events is high soon after a long-duration spaceflight;>60% of returning astronauts could not complete a 10-min 80° head-up tilt test on landing day (R+0) after ~6 months of spaceflight. The objective of this study was to demonstrate the ability of a lower body gradient compression garment (GCG) to protect against an excessive increase in heart rate and a decrease in blood pressure during standing after long-duration spaceflight. Methods: Eleven astronauts (9 M, 2 F) volunteered to participate. The stand test protocol consisted of 2 min of prone rest followed by 3.5 min of standing. Subjects completed one familiarization session, two preflight data collection sessions in standard clothing, and three tests on landing day while wearing GCG. Postflight tests were conducted 1-4 h (R+0A), ~12 h (R+0B), and ~28 h after landing (R+0C). Results: All astronauts completed the stand test preflight. Three astronauts were unable to attempt the stand test at R+0A, and one of these was unable to start the test at R+0B. One astronaut was unable to complete 3.5 min of standing at R+0B (test ended at 3.3 min). Review of the individual's blood pressure data revealed no hypotension but the astronaut reported significant motion sickness. Of the astronauts who participated in testing on landing day, the heart rate and mean arterial pressure responses to standing (stand-prone) were not different than preflight at any of the postflight sessions. Conclusion: Wearing the GCG after spaceflight prevented the tachycardia that normally occurs while standing after spaceflight without compression garments and protected against a decrease in blood pressure during a short stand test.

15.
J Appl Physiol (1985) ; 129(1): 108-123, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32525433

RESUMO

Spaceflight missions expose astronauts to increased risk of oxidative stress and inflammatory damage that might accelerate the development of asymptomatic cardiovascular disease. The purpose of this investigation was to determine whether long-duration spaceflight (>4 mo) results in structural and functional changes in the carotid and brachial arteries. Common carotid artery (CCA) intima-media thickness (cIMT), CCA distensibility and stiffness, and brachial artery endothelium-dependent and -independent vasodilation were measured in 13 astronauts (10 men, 3 women) ~180 and 60 days before launch, during the mission on ~15, 60, and 160 days of spaceflight, and within 1 wk after landing. Biomarkers of oxidative stress and inflammation were measured at corresponding times in fasting blood samples and urine samples from 24- or 48-h pools. Biomarkers of oxidative stress and inflammation increased during spaceflight, but most returned to preflight levels within 1 wk of landing. Mean cIMT, CCA stiffness, and distensibility were not significantly different from preflight at any time. As a group, neither mean endothelium-dependent nor -independent vasodilation changed from preflight to postflight, but changes within individuals in endothelial function related to some biomarkers of oxidative stress. Whereas biomarkers of oxidative stress and inflammation are elevated during spaceflight, CCA and brachial artery structure and function were not changed by spaceflight. It is unclear whether future exploration missions, with an extended duration in altered gravity fields and higher radiation exposure, may be problematic.NEW & NOTEWORTHY Carotid artery structure and stiffness did not change on average in astronauts during long-duration spaceflight (<12 mo), despite increased oxidative stress and inflammation. Most oxidative stress and inflammation biomarkers returned to preflight levels soon after landing. Brachial artery structure and function also were unchanged by spaceflight. In this group of healthy middle-aged male and female astronauts, spaceflight in low Earth orbit does not appear to increase long-term cardiovascular health risk.


Assuntos
Espessura Intima-Media Carotídea , Voo Espacial , Astronautas , Artéria Carótida Primitiva/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
16.
Radiat Res ; 172(1): 10-20, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19580503

RESUMO

The NASA Study of Cataract in Astronauts (NASCA) is a 5-year longitudinal study of the effect of space radiation exposure on the severity/progression of nuclear, cortical and posterior subcapsular (PSC) lens opacities. Here we report on baseline data that will be used over the course of the longitudinal study. Participants include 171 consenting astronauts who flew at least one mission in space and a comparison group made up of three components: (a) 53 astronauts who had not flown in space, (b) 95 military aircrew personnel, and (c) 99 non-aircrew ground-based comparison subjects. Continuous measures of nuclear, cortical and PSC lens opacities were derived from Nidek EAS 1000 digitized images. Age, demographics, general health, nutritional intake and solar ocular exposure were measured at baseline. Astronauts who flew at least one mission were matched to comparison subjects using propensity scores based on demographic characteristics and medical history stratified by gender and smoking (ever/never). The cross-sectional data for matched subjects were analyzed by fitting customized non-normal regression models to examine the effect of space radiation on each measure of opacity. The variability and median of cortical cataracts were significantly higher for exposed astronauts than for nonexposed astronauts and comparison subjects with similar ages (P=0.015). Galactic cosmic space radiation (GCR) may be linked to increased PSC area (P=0.056) and the number of PSC centers (P=0.095). Within the astronaut group, PSC size was greater in subjects with higher space radiation doses (P=0.016). No association was found between space radiation and nuclear cataracts. Cross-sectional data analysis revealed a small deleterious effect of space radiation for cortical cataracts and possibly for PSC cataracts. These results suggest increased cataract risks at smaller radiation doses than have been reported previously.


Assuntos
Astronautas , Radiação Cósmica/efeitos adversos , Cristalino/patologia , Cristalino/efeitos da radiação , Voo Espacial , Adulto , Aeronaves , Catarata/etiologia , Estudos Transversais , Feminino , Humanos , Cápsula do Cristalino/patologia , Cápsula do Cristalino/efeitos da radiação , Córtex do Cristalino/patologia , Córtex do Cristalino/efeitos da radiação , Núcleo do Cristalino/patologia , Núcleo do Cristalino/efeitos da radiação , Masculino , Pessoa de Meia-Idade , Exposição Ocupacional/efeitos adversos , Doses de Radiação , Lesões por Radiação/complicações , Estados Unidos , United States National Aeronautics and Space Administration
17.
Aviat Space Environ Med ; 80(5 Suppl): A45-54, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19476169

RESUMO

INTRODUCTION: Spaceflight has functionally significant effects on sensorimotor behavior, but it is difficult to separate the effects of ascending somatosensory changes caused by postural muscle and plantar surface unloading from descending visual-vestibular neural changes. To differentiate somatosensory changes from graviceptor changes in post-spaceflight sensorimotor behavior, bed rest may serve as an exclusionary analog to spaceflight. METHODS: Four separate tests were used to measure changes in sensorimotor performance: 1) the monosynaptic stretch reflex (MSR); 2) the functional stretch reflex (FSR); 3) balance control parameters associated with computerized dynamic posturography (CDP); and 4) a functional mobility test (FMT). RESULTS: A mixed model regression analysis showed significant increases in median MSR start and peak latencies, while the median FSR latency showed no significant increase. Median MSR peak magnitude showed a significant increase during the middle bed rest period (19-60 d). There were no significant effects of bed rest on balance control, but some indication that dynamic head movements may affect posture after bed rest. Time to complete the course for the FMT increased significantly with bed rest. DISCUSSION: The four primary tests indicate that long-duration head-down bed rest, through unloading and modification of the body's support surface, serves as an exclusionary analog for sensorimotor responses to spaceflight. Furthermore, the data suggest that procedures designed to alleviate modifications to the sensory substrate serving the soles of the feet may provide a countermeasure to help maintain support afferentation of the postural muscles.


Assuntos
Adaptação Fisiológica , Repouso em Cama , Decúbito Inclinado com Rebaixamento da Cabeça/fisiologia , Equilíbrio Postural , Voo Espacial , Adulto , Repouso em Cama/efeitos adversos , Eletromiografia , Feminino , Decúbito Inclinado com Rebaixamento da Cabeça/efeitos adversos , Humanos , Masculino , Modelos Estatísticos , Estudos Prospectivos , Análise de Regressão , Fatores de Tempo , Ausência de Peso/efeitos adversos
18.
Aerosp Med Hum Perform ; 89(9): 805-815, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30126513

RESUMO

INTRODUCTION: The purpose of this study was to determine how short- and long-duration spaceflight affects astronauts' performance on functional tests that challenge the balance control system (Seated Egress and Walk; Object Translation; Recovery from Fall/Stand; and Jump Down) and on clinical tests of balance function (Computerized Dynamic Posturography and Tandem Walk). In addition, we examined how exercise affects functional performance after long-term axial body unloading during 70 d of bed rest at 6° head-down tilt. METHODS: Data were collected twice during the 2-mo period before spaceflight or during the 2-wk period before bed rest, and four times after flight or bed rest: on the day of landing or the day bed rest ended, 1 d and 6 d later, and a final session 12 d after bed rest or 30 d after spaceflight. RESULTS: For bed rest subjects, long-term axial unloading alone caused functional performance deficits immediately after bed rest. However, the addition of an exercise regimen did not significantly improve median functional performance immediately after this axial unloading. For spaceflight subjects, the length of the space mission was directly related to the severity of functional performance deficits within 1 d of landing and during the subsequent recovery period after flight. DISCUSSION: The performance data suggest that an additional sensorimotor-based countermeasure may be necessary to maintain functional performance at preflight levels immediately after spaceflight.Miller CA, Kofman IS, Brady RR, May-Phillips TR, Batson CD, Lawrence EL, Taylor LC, Peters BT, Mulavara AP, Feiveson AH, Reschke MF, Bloomberg JJ. Functional task and balance performance in bed rest subjects and astronauts. Aerosp Med Hum Perform. 2018; 89(9):805-815.


Assuntos
Astronautas/estatística & dados numéricos , Repouso em Cama , Equilíbrio Postural/fisiologia , Voo Espacial , Adulto , Medicina Aeroespacial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise e Desempenho de Tarefas
19.
Med Sci Sports Exerc ; 50(9): 1961-1980, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29620686

RESUMO

INTRODUCTION: Exposure to microgravity causes alterations in multiple physiological systems, potentially impacting the ability of astronauts to perform critical mission tasks. The goal of this study was to determine the effects of spaceflight on functional task performance and to identify the key physiological factors contributing to their deficits. METHODS: A test battery comprised of seven functional tests and 15 physiological measures was used to investigate the sensorimotor, cardiovascular, and neuromuscular adaptations to spaceflight. Astronauts were tested before and after 6-month spaceflights. Subjects were also tested before and after 70 d of 6° head-down bed rest, a spaceflight analog, to examine the role of axial body unloading on the spaceflight results. These subjects included control and exercise groups to examine the effects of exercise during bed rest. RESULTS: Spaceflight subjects showed the greatest decrement in performance during functional tasks that required the greatest demand for dynamic control of postural equilibrium which was paralleled by similar decrements in sensorimotor tests that assessed postural and dynamic gait control. Other changes included reduced lower limb muscle performance and increased HR to maintain blood pressure. Exercise performed during bed rest prevented detrimental change in neuromuscular and cardiovascular function; however, both bed rest groups experienced functional and balance deficits similar to spaceflight subjects. CONCLUSION: Bed rest data indicate that body support unloading experienced during spaceflight contributes to postflight postural control dysfunction. Further, the bed rest results in the exercise group of subjects confirm that resistance and aerobic exercises performed during spaceflight can play an integral role in maintaining neuromuscular and cardiovascular functions, which can help in reducing decrements in functional performance. These results indicate that a countermeasure to mitigate postflight postural control dysfunction is required to maintain functional performance.


Assuntos
Adaptação Fisiológica , Repouso em Cama , Equilíbrio Postural , Voo Espacial , Análise e Desempenho de Tarefas , Ausência de Peso , Adulto , Astronautas , Exercício Físico , Teste de Esforço , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
20.
Aerosp Med Hum Perform ; 88(9): 812-818, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28818139

RESUMO

INTRODUCTION: The effects of repeated centrifugation in association with head-down tilt (HDT) bed rest (BR) on the mediation of basic reflexes associated with the major postural muscles was investigated as a potential countermeasure for maintaining balance control and neuromotor reflex function. METHODS: There were 15 male volunteers who were exposed to 21 d of 6° HDT-BR. Eight were treated with daily 1-h artificial gravity (AG) exposures aboard a short radius centrifuge that provided 1-g footward loading at heart level. The other seven served as HDT-BR control subjects. Balance control was assessed using a standard computerized dynamic posturography (CDP) protocol that was modified by adding low-frequency pitch-plane head movements. Neuromotor reflex function was assessed using tendon stretch reflexes (MSR) and functional stretch reflex (FSR) data collected from the triceps surae muscle group. RESULTS: CDP performance was degraded by HDT-BR in both groups (ranging from 24 to 26%), but was unaffected by AG. BR also degraded MSR and FSR functions in both groups, with increased peak reflex latencies between 1.5 and 1.95 ms, but AG maintained pre-BR latencies for the MSR subjects. DISCUSSION: AG exposure did not modify balance control from pre-BR responses, but did help prevent decrements in FSR latencies post-BR.Paloski WH, Reschke MF, Feiveson AH. Bed rest and intermittent centrifugation effects on human balance and neuromotor reflexes. Aerosp Med Hum Perform. 2017; 88(9):812-818.


Assuntos
Repouso em Cama , Gravidade Alterada , Decúbito Inclinado com Rebaixamento da Cabeça/fisiologia , Intolerância Ortostática/fisiopatologia , Equilíbrio Postural/fisiologia , Reflexo de Estiramento/fisiologia , Adaptação Fisiológica , Adulto , Voluntários Saudáveis , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa