Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Open Med (Wars) ; 18(1): 20230814, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37786777

RESUMO

Cognitive impairment in multiple sclerosis (MS) can adversely impact participation in employment, activities of daily living, and wider society. It affects 40-70% of people living with MS (pwMS). There are few effective treatments for cognitive impairment in people with MS. Neuromodulation with intermittent theta-burst stimulation (iTBS) has potential for treating cognitive impairment in pwMS. This single-centre mixed-methods feasibility randomised controlled trial (NCT04931953) will assess feasibility, acceptability, and tolerability of procedures used for applying iTBS for improving cognitive performance in pwMS. Participants will be randomised into three intervention groups with varying lengths of iTBS treatment (from 1 to 4 weeks) and a sham-control group. Quantitative data will be collected at three time points (baseline, end of intervention, and 8-week follow-up). End of the intervention semi-structured interviews will explore the views and experiences of the participants receiving the intervention, analysed using framework analysis. Quantitative and qualitative data will be synthesised to explore the impact of the iTBS intervention. Ethical approval has been received from the Health Research Authority (21/LO/0506) and recruitment started in June 2022. The results will inform the design of an RCT of the efficacy of iTBS as a therapeutic intervention for cognitive impairment in pwMS.

2.
Brain Sci ; 11(2)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499073

RESUMO

Type 1 and type 2 diabetes mellitus have an impact on the microstructural environment and cognitive functions of the brain due to its microvascular/macrovascular complications. Conventional Magnetic Resonance Imaging (MRI) techniques can allow detection of brain volume reduction in people with diabetes. However, conventional MRI is insufficiently sensitive to quantify microstructural changes. Diffusion Tensor Imaging (DTI) has been used as a sensitive MRI-based technique for quantifying and assessing brain microstructural abnormalities in patients with diabetes. This systematic review aims to summarise the original research literature using DTI to quantify microstructural alterations in diabetes and the relation of such changes to cognitive status and metabolic profile. A total of thirty-eight published studies that demonstrate the impact of diabetes mellitus on brain microstructure using DTI are included, and these demonstrate that both type 1 diabetes mellitus and type 2 diabetes mellitus may affect cognitive abilities due to the alterations in brain microstructures.

3.
Diagnostics (Basel) ; 10(11)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218056

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an autoimmune, inflammatory, demyelinating and degenerative disease of the central nervous system (CNS). To date, there is no definitive imaging biomarker for diagnosing MS. The current diagnostic criteria are mainly based on clinical relapses supported by the presence of white matter lesions (WMLs) on MRI. However, misdiagnosis of MS is still a significant clinical problem. The paramagnetic, iron rims (IRs) around white matter lesions have been proposed to be an imaging biomarker in MS. This study aimed to carry out a systematic mapping review to explore the detection of iron rim lesions (IRLs), on clinical MR scans, and describe the characteristics of IRLs presence in MS versus other MS-mimic disorders. METHODS: Publications from 2001 on IRs lesions were reviewed in three databases: PubMed, Web of Science and Embase. From the initial result set 718 publications, a final total of 38 papers were selected. RESULTS: The study revealed an increasing interest in iron/paramagnetic rims lesions studies. IRs were more frequently found in periventricular regions and appear to be absent in MS-mimics. Conclusions IR is proposed as a promising imaging biomarker for MS.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa