Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
FASEB J ; 38(11): e23726, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38847773

RESUMO

Calcitriol and calcimimetics are used to treat hyperparathyroidism secondary to chronic kidney disease (CKD). Calcitriol administration and the subsequent increase in serum calcium concentration decrease parathyroid hormone (PTH) levels, which should reduce bone remodeling. We have previously reported that, when maintaining a given concentration of PTH, the addition of calcimimetics is associated with an increased bone cell activity. Whether calcitriol administration affects bone cell activity while PTH is maintained constant should be evaluated in an animal model of renal osteodystrophy. The aim of the present study was to compare in CKD PTH-clamped rats the bone effects of calcitriol and calcimimetic administration. The results show that the administration of calcitriol and calcimimetic at doses that induced a similar reduction in PTH secretion produced dissimilar effects on osteoblast activity in 5/6 nephrectomized (Nx) rats with secondary hyperparathyroidism and in Nx rats with clamped PTH. Remarkably, in both rat models, the administration of calcitriol decreased osteoblastic activity, whereas calcimimetic increased bone cell activity. In vitro, calcitriol supplementation inhibited nuclear translocation of ß-catenin and reduced proliferation, osteogenesis, and mineralization in mesenchymal stem cells differentiated into osteoblasts. In conclusion, besides the action of calcitriol and calcimimetics at parathyroid level, these treatments have specific effects on bone cells that are independent of the PTH level.


Assuntos
Calcimiméticos , Calcitriol , Osteoblastos , Hormônio Paratireóideo , Animais , Calcitriol/farmacologia , Ratos , Calcimiméticos/farmacologia , Calcimiméticos/uso terapêutico , Hormônio Paratireóideo/farmacologia , Masculino , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Hiperparatireoidismo Secundário/tratamento farmacológico , Hiperparatireoidismo Secundário/etiologia , Hiperparatireoidismo Secundário/metabolismo , Osso e Ossos/metabolismo , Osso e Ossos/efeitos dos fármacos , Ratos Wistar , Insuficiência Renal/tratamento farmacológico , Insuficiência Renal/metabolismo , Osteogênese/efeitos dos fármacos , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/complicações , Diferenciação Celular/efeitos dos fármacos , Cálcio/metabolismo
2.
Kidney Int ; 95(5): 1064-1078, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30878213

RESUMO

Calcimimetics decrease parathyroid hormone (PTH) secretion in patients with secondary hyperparathyroidism. The decrease in PTH should cause a reduction in bone turnover; however, the direct effect of calcimimetics on bone cells, which express the calcium-sensing receptor (CaSR), has not been defined. In this study, we evaluated the direct bone effects of CaSR activation by a calcimimetic (AMG 641) in vitro and in vivo. To create a PTH "clamp," total parathyroidectomy was performed in rats with and without uremia induced by 5/6 nephrectomy, followed by a continuous subcutaneous infusion of PTH. Animals were then treated with either the calcimimetic or vehicle. Calcimimetic administration increased osteoblast number and osteoid volume in normal rats under a PTH clamp. In uremic rats, the elevated PTH concentration led to reduced bone volume and increased bone turnover, and calcimimetic administration decreased plasma PTH. In uremic rats exposed to PTH at 6-fold the usual replacement dose, calcimimetic administration increased osteoblast number, osteoid surface, and bone formation. A 9-fold higher dose of PTH caused an increase in bone turnover that was not altered by the administration of calcimimetic. In an osteosarcoma cell line, the calcimimetic induced Erk1/2 phosphorylation and the expression of osteoblast genes. The addition of a calcilytic resulted in the opposite effect. Moreover, the calcimimetic promoted the osteogenic differentiation and mineralization of human bone marrow mesenchymal stem cells in vitro. Thus, calcimimetic administration has a direct anabolic effect on bone that counteracts the decrease in PTH levels.


Assuntos
Compostos de Bifenilo/administração & dosagem , Remodelação Óssea/efeitos dos fármacos , Calcimiméticos/administração & dosagem , Hiperparatireoidismo Secundário/tratamento farmacológico , Falência Renal Crônica/complicações , Fenetilaminas/administração & dosagem , Animais , Modelos Animais de Doenças , Humanos , Hiperparatireoidismo Secundário/sangue , Hiperparatireoidismo Secundário/etiologia , Masculino , Osteoblastos/efeitos dos fármacos , Hormônio Paratireóideo/administração & dosagem , Hormônio Paratireóideo/sangue , Hormônio Paratireóideo/metabolismo , Ratos , Ratos Wistar , Receptores de Detecção de Cálcio/metabolismo
3.
Semin Dial ; 28(6): 564-77, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26303319

RESUMO

Calcium, phosphorus, and magnesium homeostasis is altered in chronic kidney disease (CKD). Hypocalcemia, hyperphosphatemia, and hypermagnesemia are not seen until advanced CKD because adaptations develop. Increased parathyroid hormone (PTH) secretion maintains serum calcium normal by increasing calcium efflux from bone, renal calcium reabsorption, and phosphate excretion. Similarly, renal phosphate excretion in CKD is maintained by increased secretion of fibroblast growth factor 23 (FGF23) and PTH. However, the phosphaturic effect of FGF23 is reduced by downregulation of its cofactor Klotho necessary for binding FGF23 to FGF receptors. Intestinal phosphate absorption is diminished in CKD due in part to reduced levels of 1,25 dihydroxyvitamin D. Unlike calcium and phosphorus, magnesium is not regulated by a hormone, but fractional excretion of magnesium increases as CKD progresses. As 60-70% of magnesium is reabsorbed in the thick ascending limb of Henle, activation of the calcium-sensing receptor by magnesium may facilitate magnesium excretion in CKD. Modification of the TRPM6 channel in the distal tubule may also have a role. Besides abnormal bone morphology and vascular calcification, abnormalities in mineral homeostasis are associated with increased cardiovascular risk, increased mortality and progression of CKD.


Assuntos
Cálcio/metabolismo , Taxa de Filtração Glomerular/fisiologia , Rim/fisiopatologia , Magnésio/metabolismo , Doenças Metabólicas/etiologia , Fósforo/metabolismo , Insuficiência Renal Crônica , Progressão da Doença , Fator de Crescimento de Fibroblastos 23 , Humanos , Doenças Metabólicas/metabolismo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/fisiopatologia
4.
Am J Kidney Dis ; 60(4): 655-61, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22863286

RESUMO

Hypophosphatemia can be acute or chronic. Acute hypophosphatemia with phosphate depletion is common in the hospital setting and results in significant morbidity and mortality. Chronic hypophosphatemia, often associated with genetic or acquired renal phosphate-wasting disorders, usually produces abnormal growth and rickets in children and osteomalacia in adults. Acute hypophosphatemia may be mild (phosphorus level, 2-2.5 mg/dL), moderate (1-1.9 mg/dL), or severe (<1 mg/dL) and commonly occurs in clinical settings such as refeeding, alcoholism, diabetic ketoacidosis, malnutrition/starvation, and after surgery (particularly after partial hepatectomy) and in the intensive care unit. Phosphate replacement can be given either orally, intravenously, intradialytically, or in total parenteral nutrition solutions. The rate and amount of replacement are empirically determined, and several algorithms are available. Treatment is tailored to symptoms, severity, anticipated duration of illness, and presence of comorbid conditions, such as kidney failure, volume overload, hypo- or hypercalcemia, hypo- or hyperkalemia, and acid-base status. Mild/moderate acute hypophosphatemia usually can be corrected with increased dietary phosphate or oral supplementation, but intravenous replacement generally is needed when significant comorbid conditions or severe hypophosphatemia with phosphate depletion exist. In chronic hypophosphatemia, standard treatment includes oral phosphate supplementation and active vitamin D. Future treatment for specific disorders associated with chronic hypophosphatemia may include cinacalcet, calcitonin, or dypyrimadole.


Assuntos
Hipofosfatemia/terapia , Doença Aguda , Doença Crônica , Comorbidade , Suplementos Nutricionais , Humanos , Hipofosfatemia/epidemiologia , Hipofosfatemia/fisiopatologia , Masculino , Pessoa de Meia-Idade , Vitamina D/administração & dosagem
5.
Nutrients ; 13(2)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498560

RESUMO

In chronic kidney disease (CKD) patients, it would be desirable to reduce the intake of inorganic phosphate (P) rather than limit the intake of P contained in proteins. Urinary excretion of P should reflect intestinal absorption of P(inorganic plus protein-derived). The aim of the present study is to determine whether the ratio of urinary P to urinary urea nitrogen (P/UUN ratio) helps identify patients with a high intake of inorganic P.A cross-sectional study was performed in 71 patients affected by metabolic syndrome with CKD (stages 2-3) with normal serum P concentration. A 3-day dietary survey was performed to estimate the average daily amount and the source of P ingested. The daily intake ofPwas1086.5 ± 361.3mg/day; 64% contained in animal proteins, 22% in vegetable proteins, and 14% as inorganic P. The total amount of P ingested did not correlate with daily phosphaturia, but it did correlate with the P/UUN ratio (p < 0.018). Patients with the highest tertile of the P/UUN ratio >71.1 mg/g presented more abundant inorganic P intake (p < 0.038).The P/UUN ratio is suggested to be a marker of inorganic P intake. This finding might be useful in clinical practices to identify the source of dietary P and to make personalized dietary recommendations directed to reduce inorganic P intake.


Assuntos
Dieta , Ingestão de Alimentos , Fosfatos/administração & dosagem , Fosfatos/urina , Ureia/urina , Adulto , Idoso , Animais , Estudos Transversais , Feminino , Fator de Crescimento de Fibroblastos 23 , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Wistar
6.
Nephrol Dial Transplant ; 25(4): 1087-97, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19934096

RESUMO

Background. Many experimental studies have demonstrated that parathyroid cell proliferation is induced by uremia and further aggravated by hypocalcemia, phosphorus retention and vitamin D deficiency. However, these factors may also promote parathyroid growth without uremia. In the present study, we examined the onset and progression of parathyroid hyperplasia regardless of the uremic setting, a situation that might occur soon during the early renal disease. Thus, the novelty of this work resides in the close examination of the time course for the expected changes in proliferation rates and their association with parathyroid hormone (PTH) release in normal rats under the physiological demands of a high-phosphate diet (HPD) or a low-calcium diet (LCD). Methods. We evaluated the functional response of the parathyroid glands in normal rats to different physiological demands an HPD 0.6% Ca, 1.2% P) and LCD 0.2% Ca, 0.6% P) and compared it with that of uremic rats. Furthermore, we also evaluated the time course for the reversal of high-P and low-Ca-induced parathyroid cell growth and PTH upon normalization of dietary Ca and P intake (0.6% Ca, 0.6% P). Proliferation was measured by flow cytometry and calcium receptor (CaR) and vitamin D receptor (VDR) expression were assessed by qRT-PCR. Results. The pattern in the development of parathyroid hyperplasia by the two dietary models was different. The HPD produced a stronger stimulus than the number of proliferating cells doubled after only 1 day, while the LCD required 5 days to induce an increase; the elevated calcitriol might be a mitigating factor. The increase in cell proliferation was accompanied by a transient down-regulation of VDR expression (higher in the HPD); the expression of CaR was not affected by either diet. Cell proliferation and VDR mRNA levels were restored to control values by Day 15; it is as though the gland had attained a sufficient level of hyperplasia to respond to the PTH challenge. Compared to normal rats, the response of uremic rats to the HPD showed sustained and much higher rates of PTH secretion and cell proliferation and sustained down-regulation of both VDR mRNA and CaR mRNA. Finally, the recovery from the HPD or LCD to a control diet resulted in a rapid restoration of PTH values (1 to 2 days), but the reduction in cell proliferation was delayed (3 to 5 days). Conclusions. Regardless of uremia, a physiological demand to increase the PTH secretion driven either by a high P or a low Ca intake is able to induce a different pattern of parathyroid hyperplasia, which might be aggravated by the down-regulation of VDR expression. The recovery from the HPD or LCD to a control diet results in a more rapid reduction in PTH than in cell proliferation.


Assuntos
Cálcio da Dieta/administração & dosagem , Glândulas Paratireoides/patologia , Hormônio Paratireóideo/metabolismo , Fósforo na Dieta/administração & dosagem , Uremia/patologia , Animais , Western Blotting , Cálcio da Dieta/farmacologia , Proliferação de Células , Hiperplasia , Masculino , Glândulas Paratireoides/metabolismo , Fósforo na Dieta/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Uremia/metabolismo
7.
Am J Vet Res ; 67(5): 801-8, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16649913

RESUMO

OBJECTIVE: To evaluate the effects of metabolic acidosis and changes in ionized calcium (Ca2+) concentration on PaO2 in dogs. ANIMALS: 33 anesthetized dogs receiving assisted ventilation. PROCEDURE: Normal acid-base status was maintained in 8 dogs (group I), and metabolic acidosis was induced in 25 dogs. For 60 minutes, normocalcemia was maintained in group I and 10 other dogs (group II), and 10 dogs were allowed to become hypercalcemic (group III); hypocalcemia was then induced in groups I and II. Groups II and IV (5 dogs) were treated identically except that, at 90 minutes, the latter underwent parathyroidectomy. At intervals, variables including PaO2, Ca2+ concentration, arterial blood pH (pHa), and systolic blood pressure were assessed. RESULTS: In group II, PaO2 increased from baseline value (96 +/- 2 mm Hg) within 10 minutes (pHa, 7.33 +/- 0.001); at 60 minutes (pHa, 7.21 +/- 0.02), PaO2 was 108 +/- 2 mm Hg. For the same pHa decrease, the PaO2 increase was less in group III. In group I, hypocalcemia caused PaO2 to progressively increase (from 95 +/- 2 mm Hg to 104 +/- 3 mm Hg), which correlated (r = -0.66) significantly with a decrease in systolic blood pressure (from 156 +/- 9 mm Hg to 118 +/- 10 mm Hg). Parathyroidectomy did not alter PaO2 values. CONCLUSIONS AND CLINICAL RELEVANCE: Induction of hypocalcemia and metabolic acidosis each increased PaO2 in anesthetized dogs, whereas acidosis-induced hypercalcemia attenuated that increase. In anesthetized dogs, development of metabolic acidosis or hypocalcemia is likely to affect ventilatory control.


Assuntos
Acidose/veterinária , Cálcio/sangue , Doenças do Cão/sangue , Oxigênio/sangue , Acidose/sangue , Acidose/induzido quimicamente , Animais , Doenças do Cão/induzido quimicamente , Cães , Feminino , Masculino , Pressão Parcial , Fatores de Tempo
8.
Clin Kidney J ; 8(2): 180-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25815174

RESUMO

Calcitonin is a 32 amino acid hormone secreted by the C-cells of the thyroid gland. Calcitonin has been preserved during the transition from ocean-based life to land dwellers and is phylogenetically older than parathyroid hormone. Calcitonin secretion is stimulated by increases in the serum calcium concentration and calcitonin protects against the development of hypercalcemia. Calcitonin is also stimulated by gastrointestinal hormones such as gastrin. This has led to the unproven hypothesis that postprandial calcitonin stimulation could play a role in the deposition of calcium and phosphate in bone after feeding. However, no bone or other abnormalities have been described in states of calcitonin deficiency or excess except for diarrhea in a few patients with medullary thyroid carcinoma. Calcitonin is known to stimulate renal 1,25 (OH)2 vitamin D (1,25D) production at a site in the proximal tubule different from parathyroid hormone and hypophosphatemia. During pregnancy and lactation, both calcitonin and 1,25D are increased. The increases in calcitonin and 1,25D may be important in the transfer of maternal calcium to the fetus/infant and in the prevention and recovery of maternal bone loss. Calcitonin has an immediate effect on decreasing osteoclast activity and has been used for treatment of hypercalcemia. Recent studies in the calcitonin gene knockout mouse have shown increases in bone mass and bone formation. This last result together with the presence of calcitonin receptors on the osteocyte suggests that calcitonin could possibly affect osteocyte products which affect bone formation. In summary, a precise role for calcitonin remains elusive more than 50 years after its discovery.

9.
J Bone Miner Res ; 17(9): 1691-700, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12211440

RESUMO

Because both metabolic (Met Acid) and respiratory acidosis (Resp Acid) have diverse effects on mineral metabolism, it has been difficult to establish whether acidosis directly affects parathyroid hormone (PTH) secretion. Our goal was to determine whether acute Met Acid and Resp Acid directly affected PTH secretion. Three groups of dogs were studied: control, acute Met Acid induced by HCl infusion, and acute Resp Acid induced by hypoventilation. EDTA was infused to prevent acidosis-induced increases in ionized calcium, but more EDTA was needed in Met Acid than in Resp Acid. The PTH response to EDTA-induced hypocalcemia was evaluated also. Magnesium needed to be infused in groups receiving EDTA to prevent hypomagnesemia. The half-life of intact PTH (iPTH) was determined during hypocalcemia when PTH was measured after parathyroidectomy. During normocalcemia, PTH values were greater (p < 0.05) in Met Acid (92 +/- 19 pg/ml) and Resp Acid (77 +/- 22 pg/ml) than in controls (27 +/- 5 pg/ml); the respective pH values were 7.23 +/- 0.01, 7.24 +/- 0.01, and 7.39 +/- 0.02. The maximal PTH response to hypocalcemia was greater (p < 0.05) in Met Acid (443 +/- 54 pg/ml) than in Resp Acid (267 +/- 37 pg/ml) and controls (262 +/- 48 pg/ml). The half-life of PTH was greater (p < 0.05) in Met Acid than in controls, but the PTH secretion rate also was greater (p < 0.05) in Met Acid than in the other two groups. In conclusion, (1) both acute Met Acid and Resp Acid increase PTH secretion when the ionized calcium concentration is normal; (2) acute Met Acid may increase the bone efflux of calcium more than Resp Acid; (3) acute Met Acid acts as a secretogogue for PTH secretion because it enhances the maximal PTH response to hypocalcemia.


Assuntos
Acidose Respiratória/fisiopatologia , Acidose/fisiopatologia , Hormônio Paratireóideo/metabolismo , Acidose/sangue , Acidose Respiratória/sangue , Animais , Cálcio/sangue , Cálcio/metabolismo , Cães , Concentração de Íons de Hidrogênio , Hipocalcemia/fisiopatologia , Magnésio/sangue , Hormônio Paratireóideo/sangue
10.
J Bone Miner Res ; 18(8): 1478-85, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12929937

RESUMO

UNLABELLED: Acute alkalosis may directly affect PTH secretion. The effect of acute metabolic and respiratory alkalosis was studied in 20 dogs. PTH values were lower in the metabolic (5.6 +/- 0.8 pg/ml) and respiratory (1.8 +/- 0.6 pg/ml) alkalosis groups than in the control group (27 +/- 5 pg/ml). Acute alkalosis is an independent factor that decreases PTH values during normocalcemia and delays the PTH response to hypocalcemia. INTRODUCTION: We recently showed that acute metabolic and respiratory acidosis stimulated PTH secretion. This study was designed to evaluate whether acute metabolic and respiratory alkalosis suppressed parathyroid hormone (PTH) secretion. MATERIALS AND METHODS: Three groups of 10 dogs were studied: control, acute metabolic alkalosis, and acute respiratory alkalosis. Metabolic alkalosis was induced with an infusion of sodium bicarbonate and respiratory alkalosis by hyperventilation. Calcium chloride was infused to prevent alkalosis-induced hypocalcemia during the first 60 minutes. During the next 30 minutes, disodium EDTA was infused to induce hypocalcemia and to evaluate the PTH response to hypocalcemia. Because the infusion of sodium bicarbonate resulted in hypernatremia, the effect of hypernatremia was studied in an additional group that received hypertonic saline. RESULTS: After 60 minutes of a normocalcemic clamp, PTH values were less (p < 0.05) in the metabolic (5.6 +/- 0.8 pg/ml) and respiratory (1.8 +/- 0.6 pg/ml) alkalosis groups than in the control group (27 +/- 5 pg/ml); the respective blood pH values were 7.61 +/- 0.01, 7.59 +/- 0.02, and 7.39 +/- 0.02. The maximal PTH response to hypocalcemia was similar among the three groups. However, the maximal PTH response was observed after a decrease in ionized calcium of 0.20 mM in the control group but not until a decrease of 0.40 mM in the metabolic and respiratory alkalosis groups. In contrast to the metabolic alkalosis group, hypernatremia (157 +/- 2 mEq/liter) in the hypertonic saline group was associated with an increased PTH value (46 +/- 4 pg/ml). Finally, the half-life of intact PTH was not different among the control and two alkalosis groups. CONCLUSIONS: Acute metabolic and respiratory alkalosis markedly decreased PTH values during normocalcemia and delayed the PTH response to hypocalcemia. Whether acute metabolic and respiratory alkalosis affect PTH and calcium metabolism in such settings as the postprandial alkaline tide (metabolic alkalosis) and acute sepsis (respiratory alkalosis) deserves to be evaluated in future studies.


Assuntos
Alcalose Respiratória/fisiopatologia , Hormônio Paratireóideo/metabolismo , Doença Aguda , Alcalose Respiratória/sangue , Animais , Cálcio/sangue , Cálcio/farmacologia , Cães , Meia-Vida , Concentração de Íons de Hidrogênio , Hormônio Paratireóideo/sangue , Fosfatos/sangue , Sódio/sangue , Fatores de Tempo
11.
Nefrologia ; 34(5): 658-69, 2014.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-25259820

RESUMO

Hyperparathyroidism develops in chronic kidney disease (CKD). A decreased calcemic response to parathyroid hormone (PTH) contributes to the development of hyperparathyroidism and is presumed due to reduced calcium efflux from bone. Contributing factors to the decreased calcemic response to PTH in CKD include: 1) hyperphosphatemia; 2) decreased serum calcitriol; 3) downregulation of the PTH1 receptor; 4) large, truncated amino-terminal PTH fragments acting at the carboxy-PTH receptor; and 5) uremic toxins. Also, prolonged high dose calcitriol administration may decrease the exchangeable pool of bone calcium independent of PTH. The goal of the review is to provide a better understanding of how the above cited factors affect calcium efflux from bone in CKD. In conclusion, much remains to be learned about the role of bone in the regulation of serum calcium.


Assuntos
Osso e Ossos/metabolismo , Cálcio/sangue , Hormônio Paratireóideo/fisiologia , Fosfatos/fisiologia , Uremia/metabolismo , Vitamina D/fisiologia , Cálcio/metabolismo , Humanos , Hormônio Paratireóideo/farmacologia , Fosfatos/farmacologia , Vitamina D/farmacologia
12.
Clin Kidney J ; 7(3): 299-302, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25852894

RESUMO

A 58-year-old man with Stage 3b chronic kidney disease and primary hyperparathyroidism treated with cinacalcet was admitted for acute cholecystitis. A cholecystostomy tube was placed, estimated glomerular filtration rate decreased, metabolic acidosis developed and ionized calcium increased from 1.33 to 1.76 mM despite cinacalcet administration. A sodium bicarbonate infusion corrected the metabolic acidosis restoring ionized calcium to normal despite no improvement in renal function. The correlation between the increase in serum bicarbonate and decrease in ionized calcium was r = -0.93, P < 0.001. In summary, severe hypercalcemia was attributable to metabolic acidosis increasing calcium efflux from bone while renal failure decreased the capacity to excrete calcium.

14.
Nefrología (Madr.) ; 34(5): 658-669, sept.-oct. 2014. ilus, tab
Artigo em Inglês | IBECS (Espanha) | ID: ibc-130894

RESUMO

Hyperparathyroidism develops in chronic kidney disease (CKD). A decreased calcemic response to parathyroid hormone (PTH) contributes to the development of hyperparathyroidism and is presumed due to reduced calcium efflux from bone. Contributing factors to the decreased calcemic response to PTH in CKD include: 1) hyperphosphatemia; 2) decreased serum calcitriol; 3) downregulation of the PTH1 receptor; 4) large, truncated amino-terminal PTH fragments acting at the carboxy-PTH receptor; and 5) uremic toxins. Also, prolonged high dose calcitriol administration may decrease the exchangeable pool of bone calcium independent of PTH. The goal of the review is to provide a better understanding of how the above cited factors affect calcium efflux from bone in CKD. In conclusion, much remains to be learned about the role of bone in the regulation of serum calcium (AU)


El hiperparatiroidismo se desarrolla en la enfermedad renal crónica (ERC). La disminución de la respuesta calcémica a la hormona paratiroidea (PTH) contribuye al desarrollo de hiperparatiroidismo y es probable que se deba a una reducción de la emisión de calcio de los huesos. Entre los factores que contribuyen a la disminución de la respuesta calcémica a la PTH en la ERC se encuentran: 1) la hiperfosfatemia; 2) la disminución del calcitriol sérico; 3) la desensibilización del receptor PTHR1; 4) la presencia de fragmentos de gran tamaño de los extremos aminoterminales de la hormona paratiroidea que actúan en el receptor carboxi-PTH y 5) las toxinas urémicas. Asimismo, la administración prolongada de una dosis elevada de calcitriol podría disminuir la reserva intercambiable de calcio independiente de la hormona paratiroidea. El objetivo de esta revisión es facilitar la comprensión de cómo afectan los factores mencionados anteriormente a la emisión de calcio procedente del hueso en la ERC. Como conclusión, aún queda mucho por aprender acerca del papel de los huesos en la regulación del calcio sérico (AU)


Assuntos
Humanos , Cálcio/sangue , Hiperparatireoidismo Secundário/fisiopatologia , Insuficiência Renal Crônica/fisiopatologia , Calcitriol/sangue , Hiperfosfatemia/fisiopatologia , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo
15.
Clin J Am Soc Nephrol ; 4(11): 1866-77, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19808223

RESUMO

In 1937, Fuller Albright first described two rare genetic disorders: Vitamin D resistant rickets and polyostotic fibrous dysplasia, now respectively known as X-linked hypophosphatemic rickets (XLH) and the McCune-Albright syndrome. Albright carefully characterized and meticulously analyzed one patient, W.M., with vitamin D-resistant rickets. Albright subsequently reported additional carefully performed balance studies on W.M. In this review, which evaluates the journey from the initial description of vitamin D-resistant rickets (XLH) to the regulation of renal phosphate transport, we (1) trace the timeline of important discoveries in unraveling the pathophysiology of XLH, (2) cite the recognized abnormalities in mineral metabolism in XLH, (3) evaluate factors that may affect parathyroid hormone values in XLH, (4) assess the potential interactions between the phosphate-regulating gene with homology to endopeptidase on the X chromosome and fibroblast growth factor 23 (FGF23) and their resultant effects on renal phosphate transport and vitamin D metabolism, (5) analyze the complex interplay between FGF23 and the factors that regulate FGF23, and (6) discuss the genetic and acquired disorders of hypophosphatemia and hyperphosphatemia in which FGF23 plays a role. Although Albright could not measure parathyroid hormone, he concluded on the basis of his studies that showed calcemic resistance to parathyroid extract in W.M. that hyperparathyroidism was present. Using a conceptual approach, we suggest that a defect in the skeletal response to parathyroid hormone contributes to hyperparathyroidism in XLH. Finally, at the end of the review, abnormalities in renal phosphate transport that are sometimes found in patients with polyostotic fibrous dysplasia are discussed.


Assuntos
Raquitismo Hipofosfatêmico Familiar/metabolismo , Displasia Fibrosa Poliostótica/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X , Rim/metabolismo , Fosfatos/metabolismo , Raquitismo Hipofosfatêmico Familiar/genética , Raquitismo Hipofosfatêmico Familiar/fisiopatologia , Fator de Crescimento de Fibroblastos 23 , Displasia Fibrosa Poliostótica/genética , Displasia Fibrosa Poliostótica/fisiopatologia , Humanos
16.
Clin J Am Soc Nephrol ; 2(6): 1283-305, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17942777

RESUMO

This review examines the dynamics of parathyroid hormone secretion in health and in various causes of secondary hyperparathyroidism. Although most studies of parathyroid hormone and calcium have focused on the modification of parathyroid hormone secretion by serum calcium, the relationship between parathyroid hormone and serum calcium is bifunctional because parathyroid hormone also modifies serum calcium. In normal animals and humans, factors such as phosphorus and vitamin D modify the basal parathyroid hormone level and the maximal parathyroid hormone response to hypocalcemia. Certain medications, such as lithium and estrogen, in normal individuals and sustained changes in the serum calcium concentration in hemodialysis patients change the set point of calcium, which reflects the serum calcium concentration at which parathyroid hormone secretion responds. Hypocalcemia increases the basal/maximal parathyroid hormone ratio, a measure of the relative degree of parathyroid hormone stimulation. The phenomenon of hysteresis, defined as a different parathyroid hormone value for the same serum calcium concentration during the induction of and recovery from hypo- and hypercalcemia, is discussed because it provides important insights into factors that affect parathyroid hormone secretion. In three causes of secondary hyperparathyroidism--chronic kidney disease, vitamin D deficiency, and aging--factors that affect the dynamics of parathyroid hormone secretion are evaluated in detail. During recovery from vitamin D deficiency, the maximal parathyroid hormone remains elevated while the basal parathyroid hormone value rapidly becomes normal because of a shift in the set point of calcium. Much remains to be learned about the dynamics of parathyroid hormone secretion in health and secondary hyperparathyroidism.


Assuntos
Hiperparatireoidismo Secundário/metabolismo , Hormônio Paratireóideo/metabolismo , Acidose/metabolismo , Envelhecimento/metabolismo , Animais , Cálcio/sangue , Humanos , Hipocalcemia/metabolismo , Hormônio Paratireóideo/sangue , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Fragmentos de Peptídeos/sangue , Diálise Renal , Deficiência de Vitamina D/metabolismo
18.
Nephrol Dial Transplant ; 21(4): 917-23, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16431896

RESUMO

BACKGROUND: A variety of stimuli are involved in the pathogenesis of parathyroid gland hyperplasia in renal failure. Recently, it was shown that blocking the signal from the endothelin-1 (ET-1) receptor (ET(A)R/ET(B)R) by a non-selective receptor antagonist, bosentan, reduced parathyroid cell proliferation, parathyroid gland hyperplasia and parathyroid hormone (PTH) levels in normal rats on a calcium deficient diet. Our goal was to determine whether in 5/6 nephrectomized (NPX) rats with developing or established hyperparathyroidism, the endothelin receptor blocker, bosentan, reduced the increase in parathyroid cell proliferation, parathyroid gland hyperplasia and PTH values. METHODS: High (HPD, 1.2%) or normal phosphorus diets (PD) (NPD, 0.6%) were given to 5/6 NPX rats for 15 days (NPX(15)). In each dietary group, one-half the rats were given bosentan (B) i.p. 100 mg/kg/day. The four groups of rats were: (1) NPX(15)-1.2% P; (2) NPX(15)-1.2% P+B; (3) NPX(15)-0.6% P; and (4) NPX(15)-0.6% P+B. In a second study in which hyperparathyroidism was already established in 5/6 NPX rats fed a HPD for 15 days, rats were divided into two groups in which one group was maintained on a HPD and the other group was changed to very low PD (VLPD, <0.05%) for an additional 15 days. In each dietary group, one-half the rats were given bosentan i.p. 100 mg/kg-day. The four groups of rats were: (1) NPX(30)-1.2% P; (2) NPX(30)-1.2% P+B; (3) NPX(30)-0.05% P and (4) NPX(30)-0.05% P+B. Parathyroid cell proliferation was measured by proliferating cell nuclear antigen (PCNA) staining and ET-1 expression by immunohistochemical techniques. RESULTS: In the study of developing hyperparathyroidism, bosentan reduced ET-1 expression in the parathyroid glands of rats on the NPD and HPD (P<0.05). But only in rats on the NPD did bosentan result in a reduced increase in parathyroid gland weight (P<0.05). In the study of established hyperparathyroidism, in which 5/6 NPX rats were given a HPD for 15 days, bosentan started on day 15 reduced (P<0.05) ET-1 expression in rats maintained for 15 additional days on the HPD or the VLPD. On the VLPD, parathyroid gland weight was less (P<0.05) than that in rats on the HPD sacrificed at 15 or 30 days. Bosentan did not reduce parathyroid cell proliferation or parathyroid gland weight in rats maintained on the HPD or further reduce these parameters beyond that obtained with dietary phosphorus restriction. PTH values were lowest in the VLPD group, intermediate in the NPD group, and highest in the HPD group, but in none of the three groups did bosentan decrease PTH values. CONCLUSIONS: In azotemic rats with developing hyperparathyroidism, bosentan resulted in a reduced increase in parathyroid gland weight when dietary phosphorus content was normal. Despite a reduction in ET-1 expression in rats on a HPD with developing or established hyperparathyroidism, bosentan did not reduce the increase in parathyroid cell proliferation, parathyroid gland growth or PTH values. Thus, ET-1 blockade with bosentan did not prevent parathyroid gland growth in the azotemic rat.


Assuntos
Anti-Hipertensivos/farmacologia , Proliferação de Células/efeitos dos fármacos , Antagonistas dos Receptores de Endotelina , Glândulas Paratireoides/crescimento & desenvolvimento , Hormônio Paratireóideo/sangue , Sulfonamidas/farmacologia , Uremia/tratamento farmacológico , Animais , Bosentana , Hiperparatireoidismo/etiologia , Hiperparatireoidismo/prevenção & controle , Masculino , Fósforo na Dieta/administração & dosagem , Ratos , Ratos Sprague-Dawley , Uremia/metabolismo , Uremia/patologia
19.
Nephrol Dial Transplant ; 17(5): 765-71, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11981061

RESUMO

BACKGROUND: The effect of hyperphosphataemia on serum calcium regulation in renal failure has not been well studied in a setting in which hypercalcaemia is not parathyroid hormone (PTH) mediated. In azotemic rats with a normal serum calcium concentration, an increased dietary phosphate burden affects serum calcium regulation because of its effects on skeletal resistance to PTH, calcitriol production, and possibly intestinal calcium absorption. Our goal was to determine how hyperphosphataemia affected the development of hypercalcaemia during calcitriol-induced hypercalcaemia and PTH suppression in azotemic rats with established hyperparathyroidism. METHODS: Rats underwent a two-stage 5/6 nephrectomy or corresponding sham operations. After surgery, rats were given a high phosphate diet (P 1.2%) for 4 weeks to exacerbate hyperparathyroidism and were then changed to a normal diet (P 0.6%) for 2 weeks to normalize serum calcium values in the azotemic rats. At week 7, rats were divided into five groups and sacrificed after receiving three intraperitoneal doses of calcitriol (CTR, 500 pmol/100 g) or vehicle at 24 h intervals. The five groups and dietary phosphate content were: group 1, normal renal function (NRF)+0.6% P+vehicle; group 2, NRF+0.6% P+CTR; group 3, renal failure (RF)+0.6% P+vehicle; group 4, RF+1.2% P+CTR; and group 5, RF+0.6% P+CTR. Both the 0.6% and 1.2% phosphate diets contained 0.6% calcium. RESULTS: Serum creatinine values were increased (P<0.05) in 5/6 nephrectomized rats (groups 3, 4 and 5), as were serum calcium values (P<0.05) in CTR-treated rats (groups 2, 4 and 5) and serum phosphate values (P<0.05) in CTR-treated azotemic rats (groups 4 and 5). Serum PTH values were suppressed (P<0.05) in CTR-treated hypercalcemic rats (groups 2, 4 and 5) and increased (P<0.05) in azotemic rats not given CTR (group 3). In the azotemic groups (groups 3, 4 and 5), an inverse correlation was present between serum calcium and phosphate in each group, despite a wide variation in serum calcium values. The slope of the inverse relationship between serum calcium and phosphate was steeper in CTR-treated azotemic rats on a 1.2% phosphate (group 4) diet than on a 0.6% phosphate (group 5) diet (P=0.02). Thus, for a similar increase in the serum phosphate concentration, serum calcium values decreased more in group 4 than in group 5. The independent effect of dietary phosphate on serum calcium values was also confirmed by analysis of covariance. Finally, the serum calcium concentration was shown to be greater for any given serum phosphate value in CTR-treated rats than in those not on CTR. CONCLUSIONS: In azotemic rats with calcitriol-induced hypercalcaemia, the magnitude of hypercalcaemia is affected by: (i) the serum phosphate concentration; and (ii) differences in dietary phosphate content. Calcitriol administration also acts to shift upwards the relationship between serum calcium and phosphate so that a higher serum calcium concentration can be maintained for any given serum phosphate value.


Assuntos
Calcitriol/farmacologia , Agonistas dos Canais de Cálcio/farmacologia , Cálcio/sangue , Fosfatos/administração & dosagem , Fosfatos/sangue , Insuficiência Renal/sangue , Animais , Hipercalcemia/induzido quimicamente , Hiperparatireoidismo/complicações , Masculino , Hormônio Paratireóideo/antagonistas & inibidores , Fosfatos/farmacologia , Ratos , Ratos Sprague-Dawley , Uremia/complicações
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa