Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 13(16)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28160416

RESUMO

Previous studies show that vanadium oxides suffer from severe capacity loss during cycling in the liquid electrolyte, which has hindered their applications in electrochemical energy storage. The electrochemical instability is mainly due to chemical dissolution and structural pulverization of vanadium oxides during charge/discharge cyclings. In this study the authors demonstrate that amorphous mixed-valence vanadium oxide deposited on exfoliated carbon cloth (CC) can address these two limitations simultaneously. The results suggest that tuning the V4+ /V5+ ratio of vanadium oxide can efficiently suppress the dissolution of the active materials. The oxygen-functionalized carbon shell on exfoliated CC can bind strongly with VO x via the formation of COV bonding, which retains the electrode integrity and suppresses the structural degradation of the oxide during charging/discharging. The uptake of structural water during charging and discharging processes also plays an important role in activating the electrode material. The amorphous mixed-valence vanadium oxide without any protective coating exhibits record-high cycling stability in the aqueous electrolyte with no capacitive decay in 100 000 cycles. This work provides new insights on stabilizing vanadium oxide, which is critical for the development of vanadium oxide based energy storage devices.

2.
Chem Commun (Camb) ; 55(95): 14323-14326, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31714544

RESUMO

A Na2SO4 + H2SO4 mixed electrolyte is demonstrated for a tungsten bronze pseudocapacitive electrode. The Na2SO4 supporting salt allows a large potential window while H+ effectively suppresses phase transformation. The electrode delivers a capacitance of 860 mF cm-2 with a -0.9 V-0 V window and 98% capacitance retention over 30 000 cycles.

3.
ACS Nano ; 12(4): 3557-3567, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29579384

RESUMO

Metal oxides have attracted renewed interest as promising electrode materials for high energy density supercapacitors. However, the electrochemical performance of metal oxide materials deteriorates significantly with the increase of mass loading due to their moderate electronic and ionic conductivities. This limits their practical energy. Herein, we perform a morphology and phase-controlled electrodeposition of MnO2 with ultrahigh mass loading of 10 mg cm-2 on a carbon cloth substrate to achieve high overall capacitance without sacrificing the electrochemical performance. Under optimum conditions, a hierarchical nanostructured architecture was constructed by interconnection of primary two-dimensional ε-MnO2 nanosheets and secondary one-dimensional α-MnO2 nanorod arrays. The specific hetero-nanostructures ensure facile ionic and electric transport in the entire electrode and maintain the structure stability during cycling. The hierarchically structured MnO2 electrode with high mass loading yields an outstanding areal capacitance of 3.04 F cm-2 (or a specific capacitance of 304 F g-1) at 3 mA cm-2 and an excellent rate capability comparable to those of low mass loading MnO2 electrodes. Finally, the aqueous and all-solid asymmetric supercapacitors (ASCs) assembled with our MnO2 cathode exhibit extremely high volumetric energy densities (8.3 mWh cm-3 at the power density of 0.28 W cm-3 for aqueous ASC and 8.0 mWh cm-3 at 0.65 W cm-3 for all-solid ASC), superior to most state-of-the-art supercapacitors.

4.
Nanoscale ; 7(8): 3581-7, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25631619

RESUMO

Here we demonstrate a controlled two-step partial exfoliation method to synthesize functionalized exfoliated graphite substrates. Ultrathin and functionalized graphene sheets anchoring on the graphite provide a large conductive surface area for loading pseudo-capacitive MnO2 nanosheets. The functionalized exfoliated graphite/MnO2 electrode achieved an excellent areal capacitance of 244 mF cm(-2), corresponding to an estimated MnO2 based gravimetric capacitance of 1061 F g(-1), which is just slightly lower than its theoretical value of 1110 F g(-1). More importantly, the seamless integration of graphene sheets and the graphite substrate minimizes the contact resistance, and substantially improves the rate capability of pseudo-capacitive materials. The electrode retained 44.8% of its capacitance when the charging current density increased 50 times from 0.23 to 11.5 mA cm(-2). This novel functionalized exfoliated graphite substrate serves as a promising supporting material that could address the relatively low electrical conductivity of various pseudo-capacitive materials, and increase the mass loading and rate capability of pseudo-capacitors.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa