Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
World J Oncol ; 13(5): 272-288, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36406198

RESUMO

Background: Vincosamide (Vinco) was first identified in the methanolic extract of the leaves of Psychotria leiocarpa, and Vinco has important anti-inflammatory effects and activity against cholinesterase, Vinco also has a trait to anti-tumor. However, whether Vinco can inhibit the malignant behaviors of hepatocellular carcinoma (HCC) cells is still unclear. In the present study, we explored the role of Vinco in suppressing the malignant behaviors of HCC cells. Methods: MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide), trypan blue exclusion assay, the Cell Counting Kit (CCK)-8 and flow cytometric analysis were applied to detect the proliferation and apoptosis of HCC cells; electron microscopy was performed to observe the change of cellular mitochondrial morphology; scratch repair and Transwell assays were used to analyze the migration and invasion of HCC cells; expression and localization of proteins were detected by laser confocal microscopy and Western blotting; the growth of the cancer cells in vivo was assessed in a mouse tumorous model. Results: At a dose of 10 - 80 µg/mL, Vinco inhibited the proliferation, migration, invasion and promoted apoptosis of HCC cells in a dose-dependent manner but had low cytotoxicity effect on normal liver cells. Additionally, 80 µg/mL of Vinco could significantly disrupt the morphology of mitochondria, suppress the migration and invasion of HCC cells. The growth of HCC cells in the animal tumorous model was significantly inhibited after treatment with Vinco (10 mg/kg/day) for 3 days. The results of the present study indicated that Vinco (10 - 80 µg/mL) played a role in activating caspase-3, promoting the expression of phosphate and tension homology deleted on chromosome 10 (PTEN), and inhibiting the phosphorylation of AKT (Ser473) and mTOR (Thr2448); Vinco also has a trait for suppressing the expression of CXCR4, Src, MMP9, EpCAM, Ras, Oct4 and cancer stem cell "stemness markers" CD133 and CD44 in HCC cells. Conclusions: Vinco has a role in inhibiting the malignant behaviors of HCC cells; the role molecular mechanism of Vinco may be involved in restraining expression of the growth-, metastasis-related factors, such as Src, Ras, MMP9, EpCAM, CXCR4; activating the activity of caspase-3 and blocking PI3K/AKT signaling pathway. Thus, Vinco should be considered as a new chemotherapy agent for HCC patients.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34221090

RESUMO

Aims. Heart failure is closely associated with norepinephrine-(NE-) induced cardiomyocyte hypertrophy. Schisandrin is derived from the traditional Chinese medicine Schisandra; it has a variety of pharmacological activities, and the mechanism of schisandrin-mediated protection of the cardiovascular system is not clear. Main Methods. NE was used to establish a cardiomyocyte hypertrophy model to explore the mechanism of action of schisandrin. An MTT assay was used for cell viability; Hoechst fluorescence staining was used to observe the cell morphology and calculate the apoptosis rate. The cell surface area was measured and the protein to DNA ratio was calculated, changes in mitochondrial membrane potential were detected, and the degree of hypertrophic cell damage was evaluated. WB, QRT-PCR, and immunofluorescence were used to qualitatively, quantitatively, and quantitatively detect apoptotic proteins in the JAK2/STAT3 signaling pathway. Key Findings. In the NE-induced model, schisandrin treatment reduced the apoptosis rate of cardiomyocytes, increased the ratio of the cell surface area to cardiomyocyte protein/DNA, and also, increased the membrane potential of the mitochondria. The expression of both JAK2 and STAT3 was downregulated, and the BAX/Bcl-2 ratio was significantly reduced. In conclusion, schisandrin may protect against NE-induced cardiomyocyte hypertrophy by inhibiting the JAK2/STAT3 signaling pathway and reducing cardiomyocyte apoptosis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa