Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Small ; : e2404807, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39279600

RESUMO

Overcoming the resistance of tumor cells to apoptosis and immunosuppression is an important challenge to improve tumor immunotherapy. Non-apoptotic death mode of ferroptosis has been regarded as a new strategy to enhance tumor immunotherapy against drug-resistant cancers. The lethal accumulation of lipid peroxides (LPO) determines the progress of ferroptosis. The high susceptibleness of ferroptosis provides an opportunity for combating triple-negative breast cancer. Reactive nitrogen species (RNS) produced by nitric oxide (NO) and reactive oxygen species (ROS) is more lethal than ROS for tumor cells. Herein, an RNS-mediated immunotherapy strategy for inducing ferroptosis pathway is proposed by improving LPO accumulation, and constructed a multifunctional liposome (Lipo-MT-SNAP) comprised of peroxynitrite (ONOO-) generator, tumor targeted group, inhibiting glutathione peroxidase 4 (GPX4), and basic units (dipalmitoyl phosphatidylcholine and cholesterol). The significant enhancement of LPO resulted from the intense oxidative damage of ONOO- impaired synthesis of GPX4 by depleting glutathione, which further amplified ferroptosis and triggered immunogenic cell death. In vivo, RNS-mediated photoimmunotherapy can promote polarization of M2 to M1 macrophages and dendritic cells maturation, further infiltrate T cells, regulate the secretion of inflammatory factors, and reprogram the tumor microenvironment. The powerful RNS-mediated ferroptosis induces strong immunogenicity and effectively inhibit tumor proliferation.

2.
Analyst ; 146(13): 4348-4356, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34113936

RESUMO

A new fluorescent probe, 3-(benzo[d]thiazol-2-yl)-5-bromosalicylaldehyde-4N-phenyl thiosemicarbazone (BTT), for ratiometric sensing of Zn2+ ions in methanol/HEPES buffer solution (3 : 2, pH = 7.4) is reported in this paper. The presence of Zn2+ ions yields a significant blue shift in the maximum emission of BTT from 570 nm to 488 nm, accompanied by a clear color change from orange to green. This emission change of BTT upon binding to Zn2+ in a 1 : 1 ratio may be due to the block of excited state intramolecular proton transfer (ESIPT) as well as chelation enhanced fluorescence (CHEF) on complex formation. The limit of detection (LOD) determined for Zn2+ quantitation was down to 37.7 nM. In addition, the probe BTT displays the ability to image both exogenous Zn2+ ions loaded into HeLa cells and endogenous Zn2+ distribution in living SH-SY5Y neuroblastoma cells.


Assuntos
Benzotiazóis , Corantes Fluorescentes , Células HeLa , Humanos , Espectrometria de Fluorescência , Zinco
3.
Angew Chem Int Ed Engl ; 60(38): 20728-20733, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34288304

RESUMO

A couple of fluorescent enantiomers, which are suitable for the emitters of high-efficiency TADF-sensitized CP-OLEDs, have been developed. The enantiomers show configurational stability, high PLQY of 98 %, large kr of 7.8×107  s-1 , and intense CPL activities with |glum | values of about 2.5×10-3 . Notably, by using matchable TADF sensitizer, the enantiomers were then exploited as emitter to fabricate CP-OLEDs. The TADF-sensitized CP-OLEDs not only show mirror-image CPEL activities with gEL values of +1.8×10-3 and -1.4×10-3 , but also display fast start-up featuring with low VT of 3.0 V as well as driving voltage of 4.8 V at 10 000 cd m-2 . Meaningfully, the TADF-sensitized fluorescent devices show high EQEmax of 21.5 % and extremely low efficiency roll-off, whose EQEs are 21.2 % and 15.3 % at 1000 and 10 000 cd m-2 , respectively. The obtained EQEs are comparable to those of CP-TADF emitters, which provides a promising perspective to break through the EL efficiency limit of CP-FL emitters.

4.
Chem Biodivers ; 17(9): e2000328, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32627416

RESUMO

The emodin anthraquinone derivatives are generally used in traditional Chinese medicine due to their various pharmacological activities. In the present study, a series of emodin anthraquinone derivatives have been designed and synthesized, among which 1,3-dihydroxy-6,8-dimethoxyanthracene-9,10-dione is a natural compound that has been synthesized for the very first time, and 1,3-dimethoxy-5,8-dimethylanthracene-9,10-dione is a compound that has never been reported earlier. Interestingly, while total seven of these compounds showed neuraminidase inhibitory activity in influenza virus with inhibition rate more than 50 %, specific four compounds exhibited significant inhibition of tumor cell proliferation. The further results demonstrate that 1,3-dimethoxy-5,8-dimethylanthracene-9,10-dione showed the best anticancer activity among all the synthesized compounds by inducing highest apoptosis rate to HCT116 cancer cells and arresting their G0/G1 cell cycle phase, through elevation of intracellular level of reactive oxygen species (ROS). Moreover, the binding of 1,3-dimethoxy-5,8-dimethylanthracene-9,10-dione with BSA protein has thoroughly been investigated. Altogether, this study suggests the neuraminidase inhibitory activity and antitumor potential of the new emodin anthraquinone derivatives.


Assuntos
Antraquinonas/farmacologia , Antineoplásicos/farmacologia , Desenho de Fármacos , Emodina/farmacologia , Simulação de Acoplamento Molecular , Antraquinonas/síntese química , Antraquinonas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Emodina/análogos & derivados , Emodina/química , Humanos , Estrutura Molecular , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
5.
Molecules ; 25(7)2020 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-32260423

RESUMO

A series of amide anthraquinone derivatives, an important component of some traditional Chinese medicines, were structurally modified and the resulting antitumor activities were evaluated. The compounds showed potent anti-proliferative activities against eight human cancer cell lines, with no noticeable cytotoxicity towards normal cells. Among the candidate compounds, 1-nitro-2-acyl anthraquinone-leucine (8a) showed the greatest inhibition of HCT116 cell activity with an IC50 of 17.80 µg/mL. In addition, a correlation model was established in a three-dimensional quantitative structure-activity relationship (3D-QSAR) study using Comparative Molecular Field Analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA). Moreover, compound 8a effectively killed tumor cells by reactive oxygen species (ROS)-JNK activation, causing an increase in ROS levels, JNK phosphorylation, and mitochondrial stress. Cytochrome c was then released into cytoplasm, which, in turn activated the cysteine protease pathway and ultimately induced tumor cell apoptosis, suggesting a potential use of this compound for colon cancer treatment.


Assuntos
Antraquinonas/síntese química , Antineoplásicos/síntese química , Neoplasias do Colo/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antraquinonas/química , Antraquinonas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Concentração Inibidora 50 , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosforilação , Relação Quantitativa Estrutura-Atividade
6.
Opt Express ; 26(9): 11889-11902, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29716105

RESUMO

Intrinsic photobleaching and photoluminescence (PL) intermittency of single quantum dots (QDs), originating from photo-oxidation and photo-ionization respectively, are roadblocks for most single-dot applications. Here, we effectively suppress the photobleaching and the PL intermittency of single near-infrared emitting QDs with p-phenylenediamine (PPD). The PPD cannot only be used as a high-efficient reducing agent to remove reactive oxygen species around QDs to suppress the photo-oxidation, but can also bond with the surface defect sites of single QDs to reduce electron trap states to suppress the photo-ionization. It is shown that the survival time of single QDs, the on-state probability of PL intensity traces, and the total number of emitted photons are significantly increased for single QDs in PPD compared with that on glass coverslip.

7.
Chem Soc Rev ; 42(16): 6620-33, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23744297

RESUMO

In the past few years, conjugated polymer nanoparticles (CPNs) have been successfully prepared and applied in the biological field because of their unique opto-electronic properties. The rapid development of CPNs is mainly attributed to their simple synthesis procedures and easy separation steps. The advantages of CPNs include high brightness, excellent photostability, low cytotoxicity, high quantum yield and versatile surface modification. The functionalization of CPNs with specific recognition elements imparts them good ability for targeted recognition and imaging in vitro and in vivo. CPNs can be applied to deliver drug and gene, and simultaneously to real-time monitor the release process due to their self-luminous characteristics. Moreover, CPNs can sensitize oxygen molecules to generate reactive oxygen species (ROS) which can kill adjacent bacteria and tumor cells. In this tutorial review, we provide a recent development of the preparation methods, properties, and functionalization strategies of CPNs, especially discussing their biological applications in targeted imaging, drug/gene delivery and biomedicine. The challenges and outlooks in this field will also be discussed.


Assuntos
Nanopartículas/química , Polímeros/química , Animais , Encéfalo/patologia , Portadores de Fármacos/química , Emulsões/química , Humanos , Microscopia Confocal , Neoplasias/diagnóstico , Neoplasias/patologia
8.
Angew Chem Int Ed Engl ; 53(2): 424-8, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24273033

RESUMO

The development of biomolecular fiber materials with imaging ability has become more and more useful for biological applications. In this work, cationic conjugated polymers (CCPs) were used to construct inherent fluorescent microfibers with natural biological macromolecules (DNA and histone proteins) through the interfacial polyelectrolyte complexation (IPC) procedure. Isothermal titration microcalorimetry results show that the driving forces for fiber formation are electrostatic and hydrophobic interactions, as well as the release of counterions and bound water molecules. Color-encoded IPC fibers were also obtained based on the co-assembly of DNA, histone proteins, and blue-, green-, or red- (RGB-) emissive CCPs by tuning the fluorescence resonance energy-transfer among the CCPs at a single excitation wavelength. The fibers could encapsulate GFP-coded Escherichia coli BL21, and the expression of GFP proteins was successfully regulated by the external environment of the fibers. These multi-colored fibers show a great potential in biomedical applications, such as biosensor, delivery, and release of biological molecules and tissue engineering.


Assuntos
DNA/química , Histonas/química , Polímeros/química , Técnicas Biossensoriais/métodos , Cátions , Eletrólitos/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Fluorescência , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Polímeros/síntese química , Solubilidade , Eletricidade Estática , Engenharia Tecidual/métodos
9.
ACS Appl Mater Interfaces ; 16(37): 49124-49134, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39230602

RESUMO

Photocatalytic molecules are considered to be one of the most promising substitutions of antibiotics against multidrug-resistant bacterial infections. However, the strong excitonic effect greatly restricts their efficiency in antibacterial performance. Inspired by the interfacial dipole effect, a Ti3C2 MXene modified photocatalytic molecule (MTTTPyB) is designed and synthesized to enhance the yield of photogenerated carriers under light irradiation. The alignment of the energy level between Ti3C2 and MTTTPyB results in the formation of an interfacial dipole, which can provide an impetus for the separation of carriers. Under the role of a dipole electric field, these photogenerated electrons can rapidly migrate to the side of Ti3C2 for improving the separation efficiency of photogenerated electrons and holes. Thus, more electrons can be utilized to produce reactive oxygen species (ROS) under light irradiation. As a result, over 97.04% killing efficiency can be reached for Staphylococcus aureus (S. aureus) when the concentration of MTTTPyB/Ti3C2 was 50 ppm under 660 nm irradiation for 15 min. A microneedle (MN) patch made from MTTTPyB/Ti3C2 was used to treat the subcutaneous bacterial infection. This design of an organic-inorganic interface provides an effective method to minimize the excitonic effect of molecules, further expanding the platform of inorganic/organic hybrid materials for efficient phototherapy.


Assuntos
Antibacterianos , Staphylococcus aureus , Titânio , Staphylococcus aureus/efeitos dos fármacos , Titânio/química , Titânio/farmacologia , Titânio/efeitos da radiação , Antibacterianos/química , Antibacterianos/farmacologia , Catálise/efeitos da radiação , Luz , Animais , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/química , Camundongos , Testes de Sensibilidade Microbiana , Esterilização/métodos , Processos Fotoquímicos
10.
ACS Nano ; 18(5): 4539-4550, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38261792

RESUMO

Photocatalytic materials are some of the most promising substitutes for antibiotics. However, the antibacterial efficiency is still inhibited by the rapid recombination of the photogenerated carriers. Herein, we design a cationic covalent organic framework (COF), which has a symmetrical localized built-in electric field due to the induced polarization effect caused by the electron-transfer reaction between the Zn-porphyrin unit and the guanidinium unit. Density functional theory calculations indicate that there is a symmetrical electrophilic/nucleophilic region in the COF structure, which results from increased electron density around the Zn-porphyrin unit. The formed local electric field can further inhibit the recombination of photogenerated carriers by driving rapid electron transfer from Zn-porphyrin to guanidinium under light irradiation, which greatly increases the yield of reactive oxygen species. This COF wrapped by DSPE-PEG2000 can selectively target the lipoteichoic acid of Gram-positive bacteria by electrostatic interaction, which can be used for selective discrimination and imaging of bacteria. Furthermore, this nanoparticle can rapidly kill Gram-positive bacteria including 99.75% of Staphylococcus aureus and 99.77% of Enterococcus faecalis at an abnormally low concentration (2.00 ppm) under light irradiation for 20 min. This work will provide insight into designing photoresponsive COFs through engineering charge behavior.


Assuntos
Estruturas Metalorgânicas , Porfirinas , Antibacterianos/farmacologia , Bactérias , Guanidina , Íons , Estruturas Metalorgânicas/farmacologia , Zinco/química
11.
J Mater Chem B ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39193614

RESUMO

Bacterial infections pose an increasingly serious threat to global health due to the development of drug-resistant strains. Developing a method to efficiently kill bacteria and promote tissue repair is imperative to decrease the damage from bacterial infection, especially infected wounds. Herein, a biofriendly and light-controlled nitric oxide (NO) generator HFB with simultaneous bacterial killing and wound repair properties is reported based on a tailored light-responsive molecule F(EIBC)2. HFB demonstrates an appropriate photothermal conversion efficiency of 33.4% and type I reactive oxygen species (˙OH and H2O2) generation capability to simultaneously trigger NO generation and potently kill bacteria. Furthermore, HFB can effectively eradicate mature bacterial biofilms with the aid of favorable permeability of NO. Additionally, HFB effectively eradicates Staphylococcus aureus in infected wounds of living mice and accelerates healing via NO-induced angiogenesis and collagen deposition. Owing to the encapsulated human serum albumin (HSA), heavy metal-free feature, and synergistic killing mechanism, HFB exhibits good biosafety to surrounding tissue and major organs. This work provides a novel dual-functional photo-responsive molecule and a potential light-controlled release platform for the treatment of bacterial infections.

12.
Adv Healthc Mater ; 13(22): e2400593, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38728574

RESUMO

Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is a promising treatment approach for multidrug resistant infections. PDT/PTT combination therapy can more efficiently eliminate pathogens without drug resistance. The key to improve the efficacy of photochemotherapy is the utilization efficiency of non-radiation energy of phototherapy agents. Herein, a facile phototherapy molecule (SCy-Le) with the enhancement of non-radiative energy transfer is designed by an acid stimulation under a single laser. Introduction of the protonated receptor into SCy-Le results in a distorted intramolecular charge in the infected acidic microenvironment, pH ≈ 5.5, which in turn, enhances light capture, reduces the singlet-triplet transition energies (ΔES1-T1), promotes electron system crossing, enhances capacity of reactive oxygen species generation, and causes a significant increase in temperature by improving vibrational relaxation. SCy-Le shows more than 99% bacterial killing rate against both methicillin-resistant Staphylococcus aureus and its biofilms in vitro and causes bacteria-induced wound healing in mice. This work will provide a new perspective for the design of phototherapy agents, and the emerging photochemotherapy will be a promising approach to combat the problem of antibiotic resistance.


Assuntos
Biofilmes , Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Animais , Camundongos , Biofilmes/efeitos dos fármacos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Fototerapia/métodos , Antibacterianos/farmacologia , Antibacterianos/química , Camundongos Endogâmicos BALB C , Cicatrização/efeitos dos fármacos
13.
Biomater Sci ; 12(17): 4440-4451, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39044564

RESUMO

Sonodynamic therapy (SDT) is a promising strategy to treat deep-seated bacterial infections with good tissue penetration and spatiotemporal controllability. However, the low ROS generation efficiency of current sonosensitizers limits the development of SDT. Herein, we report a porphyrin derivative, TAPyPP-2, the sonodynamic activity of which is enhanced with less oxygen dependence by tuning its molecular assembly behavior. TAPyPP-2 can spontaneously form an ultra-small nano-assembly with a diameter of 6 nm in water by conjugation with primary amine salt-decorated pyridinium via π-π staking. The ultra-small assembly behavior can lower the energy gap between singlet and triplet states to 0.01 eV and promote the separation of holes and electrons, which facilitates ROS generation under ultrasound irradiation, in particular type I ROS. The unique hydrophilic ratio and positive charges endow TAPyPP-2 with superior abilities to interact with Staphylococcus aureus, resulting in extremely high sonodynamic antibacterial activity. Therefore, TAPyPP-2 successfully kills Staphylococcus aureus bacteria in the enclosed cavity of synovial joint and achieves effective SDT of septic arthritis. This work is anticipated to motivate enormous interest in the development of efficient SDT.


Assuntos
Antibacterianos , Porfirinas , Staphylococcus aureus , Porfirinas/química , Porfirinas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Animais , Terapia por Ultrassom , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Ondas Ultrassônicas , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/terapia
14.
Adv Mater ; : e2406550, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054732

RESUMO

A promising kind of ternary chiral co-assemblies with high PLQY, large dissymmetry factor (glum), and narrowband multi-resonance characteristics are achieved by codoped-thermal annealing treatments of achiral luminescent polymer F8BT, chiral inducers R/S-5011, and achiral FRET acceptor DBN-ICZ. The optimized co-assemblies (F8BT)0.9-(R/S-5011)0.1-(DBN-ICZ)0.005 display narrowband yellow emission with full-width half maximum (FWHM) of 37 nm, PLQY of 79%, and intense CPL signals with |glum| of up to 0.26. Meaningfully, solution-processed CP-OLEDs by using those ternary chiral co-assemblies as emitting layer are successfully fabricated, which display yellow circularly polarized electroluminescence (CPEL) with EQEmax of 4.6% and gEL of up to 0.16. The corresponding Q-factor could reach up to 7.36 × 10-3, which is the highest of all the reported CP-OLEDs. Moreover, the devices also exhibit excellent comprehensive device performance with low Von of 7.0 V, high Lmax of about 25 000 cd m-2, extremely low efficiency roll-off with EQE of 4.3% at 10 000 cd m-2, as well as narrowband EL with FWHM of only 39 nm. The proposed ternary co-assembly strategy in fabricating CP-OLED provides the possibility to achieve high comprehensive device performance such as balancing high EQE and large gEL value, as well as narrowband emission, high brightness and low efficiency roll-off simultaneously.

15.
Macromol Rapid Commun ; 34(9): 736-42, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23468167

RESUMO

A new fluorescent nanoparticle (PIOT-HA) is synthesized with cationic polyester (PIOT) and anionic hyaluronic acid (HA) by electrostatic interactions in an aqueous solution. The nanoparticles (NPs) are degradable upon treatments with alkali or hyaluronidase, which exhibits better biological safety and potential application in vitro and in vivo. Through specific interactions between the HA locating on the surfaces of PIOT-HA NPs and the CD44 protein over-expressed on the MDA-MB-231 cancer cell line, PIOT-HA NPs could selectively image the cancer cells. Upon white light irradiation, the PIOT-HA NPs can sensitize oxygen to generate reactive oxygen species (ROS) that inactivate the neighboring CD44 protein, which inhibits the migration of MDA-MB-231 cancer cells.


Assuntos
Corantes Fluorescentes/síntese química , Ácido Hialurônico/análogos & derivados , Ácido Hialurônico/química , Nanopartículas/química , Poliésteres/química , Técnicas Biossensoriais , Linhagem Celular Tumoral , Movimento Celular , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/síntese química , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/metabolismo , Microscopia Confocal , Rotação Ocular , Poliésteres/síntese química , Poliésteres/metabolismo , Espécies Reativas de Oxigênio/metabolismo
16.
Angew Chem Int Ed Engl ; 52(49): 13020-3, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24127406

RESUMO

A fingerprint spectrum technique that utilizes cationic conjugated-polymer-based fluorescence resonance energy transfer (FRET) is used for multiplex detection of DNA mutations. This method detects as low as 5 % mutation of the total DNA. Ten PIK3CA mutations originating from 30 clinical breast cancer samples could be detected.


Assuntos
Análise Mutacional de DNA/métodos , DNA/análise , DNA/genética , Transferência Ressonante de Energia de Fluorescência/métodos , Mutação , Técnicas Biossensoriais , DNA/metabolismo , Impressões Digitais de DNA/métodos
17.
Biomater Sci ; 10(20): 6003-6012, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36053224

RESUMO

As the high-frequency tumor in women around the world, breast cancer has high mortality due to metastasis tumors making it difficult to cure. Herein, we report a near-infrared (NIR) activated bio-multifunctional thermosensitive hydrogel (denoted as AMDR) with powerful cell killing and immunogenicity amplifying ability. Based on the molecular engineering strategy, a photothermal agent (M-4) with 52.4% conversion efficiency was synthesized. Accordingly, the designed injectable thermosensitive hydrogel AMDR is simply fabricated by the employment of the M-4 photothermal agent, doxorubicin hydrochloride (DOX) as the antitumor drug, and imiquimod (R837) as the immunologic adjuvant by self-assembly. Under NIR irradiation, the AMDR hydrogel can generate local mild heat to release DOX for synergistic killing of tumor cells with little damage to normal cells. The immunogenic cell death induced by potent in situ killing combined with heat-released R837 can trigger robust immune response to inhibit and kill metastasis tumors. The developed AMDR hydrogel is successfully applied in the treatment of primary tumors and inhibition of distal tumors of tumor-bearing mice. The study provides a novel strategy and platform for complete treatment of breast cancer and also offers ideas for designing high-efficiency photothermal agents.


Assuntos
Antineoplásicos , Hidrogéis , Adjuvantes Imunológicos , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Feminino , Imiquimode , Imunoterapia , Camundongos , Fototerapia
18.
J Mater Chem B ; 10(39): 8003-8012, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36093913

RESUMO

Photodynamic immunotherapy (PDIT) has emerged as a technique which shows great potential in eradicating malignant tumors due to its advantages of simultaneously damaging primary tumors and inhibiting tumor metastasis and recurrence. However, the hypoxic microenvironment of tumor tissue and immune escape are two major challenges that PDIT faces. Hence, a well-designed water-soluble type I photosensitizer (TbT-TPP) based on a "D-A" strategy is reported for imaging-guided PDIT. The enhanced dihedral angle, prolonged conjugation length, strong electron withdrawing effect, and electron-rich condition endow TbT-TPP with a superior type I ROS generation ability and aggregation-induced red emission, which is demonstrated by comparision with the control molecule. We demonstrate that in hypoxic tissue, TbT-TPP can light up tumors and further efficiently kill them, triggering immunogenic cell death by generating type I ROS, which sequentially promotes the maturation of dendritic cells and enhances the T-cell response to tumor cells. Combined with immune adjuvant R837, TbT-TPP based-PDIT achieves the complete elimination of solid tumors and inhibition of tumor metastasis of living mice. This work provides a potential theranostic material and new insights into the improvement of PDIT against hypoxic tumors.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Animais , Linhagem Celular Tumoral , Imiquimode , Imunoterapia/métodos , Camundongos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Água
19.
ACS Appl Mater Interfaces ; 14(12): 14087-14096, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35297244

RESUMO

Incomplete local treatment of solid tumors is the main cause of tumor difficult to cure, and easily leads to tumor metastasis and recurrence. The dense external matrix and hypoxic microenvironment of solid tumors severely restrict the therapy efficacy of local tumors. Enhancing the infiltration ability of agents to tumor tissues and adapting the therapy mode favored to hypoxic microenvironments are beneficial to improve the cure rate of tumors. In this work, we designed and developed a self-assembled biomaterial with a cascade effect triggered by near-infrared light. The self-assembly was combined of biotin, phase change material (PNIPAM), photochemical agent (ATT-2), and alkyl radical generator (AIPH). In the assembly, biotin acted as a targeted group. ATT-2 was used to provide heat to synergistically induce the phase change and decompose alkyl radicals. The superficial and deep tumors were ablated by heat and alkyl radicals with white light irradiation of the assembly, respectively. The assay in vivo showed that the self-assembly could effectively eliminate local lesions of solid tumors. This work provides new insights for improving the cure rate of tumors, which not only develops biomaterials adapted to the tumor microenvironment, but also proposes new therapies for complete elimination of solid tumors.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Linhagem Celular Tumoral , Humanos , Hipóxia/tratamento farmacológico , Raios Infravermelhos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
20.
Chem Commun (Camb) ; 58(77): 10853-10856, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36073502

RESUMO

Bio-organic hybrid self-assemblies based on amino acids, conjugated polymers, Fe3+ and enzymes are fabricated with tumor environment-responsive and light-triggered NO release properties. By sequential energy consumption, NO attack and immune activation, FFPG shows boosted antitumor activity toward both primary and distant tumors. The three-level cascade strategy (starvation/NO/immunotherapy) adopted in this work offers a pathway to address the dilemma of low cure rate of malignant tumors.


Assuntos
Nanopartículas , Neoplasias , Aminoácidos , Linhagem Celular Tumoral , Humanos , Imunoterapia , Nanopartículas/química , Neoplasias/terapia , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa