Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 17(9): 8575-8585, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37084243

RESUMO

Nitric oxide (NO) exhibits a crucial role in various versatile and distinct physiological functions. Hence, its real-time sensing is highly important. Herein, we developed an integrated nanoelectronic system comprising a cobalt single-atom nanozyme (Co-SAE) chip array sensor and an electronic signal processing module (INDCo-SAE) for both in vitro and in vivo multichannel qualifying of NO in normal and tumor-bearing mice. The high atomic utilization and catalytic activity of Co-SAE endowed an ultrawide linear range for NO varying from 36 to 4.1 × 105 nM with a low detection limit of 12 nM. Combining in situ attenuated total reflectance surface enhanced infrared spectroscopy (ATR-SEIRAS) measurements and density function calculation revealed the activating mechanism of Co-SAE toward NO. The NO adsorption on an active Co atom forms *NO, followed by the reaction between *NO and OH-, which could help design relevant nanozymes. Further, we investigated the NO-producing behaviors of various organs of both normal and tumor-bearing mice using the proposed device. We also evaluated the NO yield produced by the wounded mouse using the designed device and found it to be approximately 15 times that of the normal mouse. This study bridges the technical gap between a biosensor and an integrated system for molecular analysis in vitro and in vivo. The as-fabricated integrated wireless nanoelectronic system with multiple test channels significantly improved the detection efficiency, which can be widely used in designing other portable sensing devices with multiplexed analysis capability.


Assuntos
Neoplasias , Óxido Nítrico , Animais , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Eletrônica
2.
Sci Rep ; 6: 20671, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26861412

RESUMO

With its excellent mechanical flexibility, low-cost and low-temperature processing, the solution processed organic field-effect transistor (OFET) is a promising platform technology for developing ubiquitous sensor applications in digital health, environment monitoring and Internet of Things. However, a contradiction between achieving low voltage operation and having stable performance severely hinder the technology to become commercially viable. This work shows that, by reducing the sub-gap density of states (DOS) at the channel for low operation voltage and using a proper low-k non-polar polymer dielectric layer, such an issue can be addressed. Stable electrical properties after either being placed for weeks or continuously prolonged bias stressing for hours in ambient air are achieved for all solution processed unencapsulated OFETs with the channel being exposed to the ambient air for analyte detection. The fabricated device presents a steep subthreshold swing less than 100 mV/decade, and an ON/OFF ratio of 10(6) at a voltage swing of 3 V. The low voltage and stable operation allows the sensor made of the OFET to be incorporated into a battery-powered electronic system for continuously reliable sensing of ammonia vapor in ambient air with very small power consumption of about 50 nW.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa