Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Comput Chem ; 44(27): 2158-2159, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37452599

RESUMO

We comment on an excited-state localization method recently proposed by Blanc et al. (J. Comput. Chem. 2023, 44, 105). Elaborate comparisons are made to demonstrate that their method is a less-comprehensive version of the diabatization method proposed by us 2 years earlier (J. Phys. Chem. Lett. 2021, 12, 1032).

2.
Angew Chem Int Ed Engl ; 62(15): e202300786, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36792541

RESUMO

Natural light-harvesting (LH) systems can divide identical dyes into unequal aggregate states, thereby achieving intelligent "allocation of labor". From a synthetic point of view, the construction of such kinds of unequal and integrated systems without the help of proteinaceous scaffolding is challenging. Here, we show that four octatetrayne-bridged ortho-perylene diimide (PDI) dyads (POPs) self-assemble into a quadruple assembly (POP)4 both in solution and in the solid state. The two identical PDI units in each POP are compartmentalized into weakly coupled PDIs (P520) and closely stacked PDIs (P550) in (POP)4 . The two extreme pools of PDI chromophores were unambiguously confirmed by single-crystal X-ray crystallography and NMR spectroscopy. To interpret the formation of the discrete quadruple assembly, we also developed a two-step cooperative model. Quantum-chemical calculations indicate the existence of multiple couplings within and across P520 and P550, which can satisfactorily describe the photophysical properties of the unequal quadruple assembly. This finding is expected to help advance the rational design of dye stacks to emulate functions of natural LH systems.

3.
Inorg Chem ; 61(30): 11702-11714, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35848492

RESUMO

A series of new half-disc-shaped platinum(II) complexes [Pt(ppy)(ALn-6OCnH2n+1)] (Pt-An), [Pt(ppyF)(ALn-6OCnH2n+1)] (Pt-Bn), and [Pt(ppyCF3)(ALn-6OCnH2n+1)] (Pt-Cn) (ALn-6OCnH2n+1 = 1,3-bis(3,4,5-trialkoxyphenyl)propane-1,3-dionato; n = 1, 6, 12) with concise structures have been designed and synthesized, in which 2-phenylpyridine (ppy) derivatives were used as cyclometalated ligands and hexacatenar ß-diketonate derivatives ALn-6OCnH2n+1 as auxiliary ligands. The single-crystal data of the methoxy diketonate analogues Pt-A1, Pt-B1, and Pt-C1 indicate that they all display excellent square planarity. These platinum(II) complexes show a certain emission tunability (ranging from λ = 506-535 nm) by the introduction of fluorine or trifluoromethyl into ppy. Thermal studies reveal that the fluorine-substituted complexes are liquid crystals but the trifluoromethyl-substituted complexes are not. The platinum(II) complexes Pt-A12, Pt-B6, and Pt-B12 can form a hexagonal columnar mesophase via intermolecular π-π interactions. In addition, compared to the reported platinum(II) metallomesogens, Pt-A12 and Pt-B12 exhibit improved ambipolar carrier mobility behaviors in semiconductor devices at the liquid crystal states.

4.
Phys Chem Chem Phys ; 24(5): 2974-2987, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35043813

RESUMO

The vibrationally resolved absorption spectra and ultrafast exciton dynamics in α-phase and ß-phase zinc phthalocyanine (ZnPc) aggregates are theoretically investigated using a non-Markovian stochastic Schrödinger equation combined with first-principles calculations. It is found that although similar double-peak structures arise in the Q-band region of the absorption spectra in both phases, these peaks are different in nature and exhibit distinct types of behavior with respect to the aggregation length. The analysis on the basis of an effective two-state model indicates that the two absorption peaks in the α phase are from mixing between the charge-transfer (CT) state and the bright Frenkel exciton (FE) state. By contrast, in the ß-phase, the low-energy peak is solely contributed by a low-lying bright FE state, whereas the high-energy peak originates from the interplay between the CT state and another high-lying bright FE state. For the relaxation processes right after photoexcitation from the Q-band region, it is found that within the first dozens of femtoseconds the ZnPc aggregates of both phases tend to temporarily fall into some intermediate states where the population distribution and average electronic energy do not obviously evolve. In addition, it is found that the optical transition of the low-lying bright FE state in the ß phase is not favorable for the formation of bound CT states due to the absence of enough driving forces.

5.
J Phys Chem A ; 126(37): 6395-6406, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36073236

RESUMO

Dipyrrolonaphthyridinedione (DPND) thin films exhibit interesting photophysical properties and singlet fission (SF) processes. A recent experimental work found that the alkyl substitution in the DPND skeleton has the remarkable influence on the characteristics of electronic absorption spectra and SF rates. Here, we theoretically elucidate the microscopic mechanism of the substituent effect on the optical properties and exciton dynamics of materials by combining the electronic structure calculations and the quantum dynamics simulations. The results show that the alkyl substituent has a minor effect on the single molecular properties but dramatically changes those of DPND aggregates via varying the intermolecular interactions. The aggregates of DPND with and without alkyl side chains exhibit the more likely characters of H-type aggregations. In the former (DPND6), the weak degree of mixing of intramolecular localized excited (LE) states and intermolecular charge transfer (CT) states makes the low-energy absorption band possess the predominant optical absorption, while in the latter (DPND), the CT and LE states are close in energy, together with their strong interaction, resulting in the substantial state-mixing, so that its two low-energy absorption bands have nearly equal oscillator strengths and a wide energy spacing of more than 0.5 eV. The simulation of exciton dynamics elucidates that the photoinitiated states in both aggregates cannot generate the free charge carrier because of the lack of enough driving forces. However, the population exchanges between LE and CT states in DPND aggregates are much faster than in DPND6 aggregates, indicating the different SF behaviors, consistent with the experimental observation.

6.
J Phys Chem A ; 125(14): 2932-2943, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33822626

RESUMO

The vibrationally resolved absorption spectra and exciton dynamics in the α-zinc phthalocyanine aggregates are theoretically investigated by using a non-Markovian stochastic Schrödinger equation. The model Hamiltonian adopted for spectral and dynamic simulations explicitly includes the couplings for both nearest-neighbor and remote exciton transfer, and it is parametrized from first-principles calculations. The results indicate that aggregation lengths and remote exciton transfer significantly influence the relative energy alignment between delocalized Frenkel exciton (FE) and charge transfer (CT) states, which in turn strongly affects the relative intensities of the two absorption peaks in the Q-band region. Analytical formulas are derived to establish quantitative structure-spectra relationships in aggregates, and they offer simple patterns to extract electronic-state properties directly from absorption spectra. The dynamics simulations reveal that the light absorption can directly generate mixed states with both FE and CT features, but it is hard for the photoexcitation from the Q-band region to generate free carriers due to the high energies of charge-separated states.

7.
Angew Chem Int Ed Engl ; 60(5): 2385-2392, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33090629

RESUMO

Long-range electron transfer (ET) in metalloenzymes is a general and fundamental process governing O2 activation and reduction. Lytic polysaccharide monooxygenases (LPMOs) are key enzymes for the oxidative cleavage of insoluble polysaccharides, but their reduction mechanism by cellobiose dehydrogenase (CDH), one of the most commonly used enzymatic electron donors, via long-range ET is still an enigma. Using multiscale simulations, we reveal that interprotein ET between CDH and LPMO is mediated by the heme propionates of CDH and solvent waters. We also show that oxygen binding to the copper center of LPMO is coupled with the long-range interprotein ET. This process, which is spin-regulated and enhanced by the presence of O2 , directly leads to LPMO-CuII -O2- , bypassing the formation of the generally assumed LPMO-CuI species. The uncovered ET mechanism rationalizes experimental observations and might have far-reaching implications for LPMO catalysis as well as the O2 - or CO-binding-enhanced long-range ET processes in other metalloenzymes.


Assuntos
Desidrogenases de Carboidrato/metabolismo , Transporte de Elétrons/fisiologia , Oxigenases de Função Mista/metabolismo , Oxigênio/metabolismo , Polissacarídeos/metabolismo , Humanos
8.
J Chem Phys ; 153(3): 034116, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32716176

RESUMO

The vibrationally resolved absorption spectra of zinc phthalocyanine (ZnPc) aggregates (up to 70 monomers) are explored using the non-Markovian stochastic Schrödinger equation. Various types of local excitations, charge-transfer (CT) excitations, and exciton-phonon couplings are explicitly included in a comprehensive model Hamiltonian, which is parameterized by first-principles calculations. The absorption spectral simulations clarify that the two absorption bands in the Q-band region observed in experiments can be assigned to the contribution from the CT-mediated interactions, rather than the mixtures of different-type aggregates, as prevailingly assumed. Furthermore, the relative intensities of the two bands are found to be closely related to the intermolecular distance and molecular number in a ZnPc aggregate. From the investigation of the decoherence process after optical excitation, it is found that CT states can induce coherence regeneration as the time scale of charge separation is much faster than that of the vibration-induced decoherence. However, they would instead boost the decoherence process as the two time scales become comparable. The two different effects of CT states may suggest a novel way to regulate the decoherence process in excitation energy relaxation.

9.
JACS Au ; 3(2): 536-549, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36873691

RESUMO

pH buffer plays versatile roles in both biology and chemistry. In this study, we unravel the critical role of pH buffer in accelerating degradation of the lignin substrate in lignin peroxidase (LiP) using QM/MM MD simulations and the nonadiabatic electron transfer (ET) and proton-coupled electron transfer (PCET) theories. As a key enzyme involved in lignin degradation, LiP accomplishes the oxidation of lignin via two consecutive ET reactions and the subsequent C-C cleavage of the lignin cation radical. The first one involves ET from Trp171 to the active species of Compound I, while the second one involves ET from the lignin substrate to the Trp171 radical. Differing from the common view that pH = 3 may enhance the oxidizing power of Cpd I via protonation of the protein environment, our study shows that the intrinsic electric fields have minor effects on the first ET step. Instead, our study shows that the pH buffer of tartaric acid plays key roles during the second ET step. Our study shows that the pH buffer of tartaric acid can form a strong H-bond with Glu250, which can prevent the proton transfer from the Trp171-H•+ cation radical to Glu250, thereby stabilizing the Trp171-H•+ cation radical for the lignin oxidation. In addition, the pH buffer of tartaric acid can enhance the oxidizing power of the Trp171-H•+ cation radical via both the protonation of the proximal Asp264 and the second-sphere H-bond with Glu250. Such synergistic effects of pH buffer facilitate the thermodynamics of the second ET step and reduce the overall barrier of lignin degradation by ∼4.3 kcal/mol, which corresponds to a rate acceleration of 103-fold that agrees with experiments. These findings not only expand our understanding on pH-dependent redox reactions in both biology and chemistry but also provide valuable insights into tryptophan-mediated biological ET reactions.

10.
J Chem Theory Comput ; 19(13): 3900-3914, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37296507

RESUMO

A new diabatization scheme is proposed to calculate the electronic couplings for the singlet fission process in multichromophoric systems. In this approach, a robust descriptor that treats single and multiple excitations on an equal footing is adopted to quantify the localization degree of the particle and hole densities of the electronic states. By maximally localizing the particles and holes in terms of predefined molecular fragments, quasi-diabatic states with well-defined characters (locally excited, charge transfer, correlated triplet pair, etc.) can be automatically constructed as the linear combinations of the adiabatic ones, and the electronic couplings can be directly obtained. This approach is very general in that it applies to electronic states with various spin multiplicities and can be combined with various kinds of preliminary electronic structure calculations. Due to the high numerical efficiency, it is able to manipulate more than 100 electronic states in diabatization. The applications to the tetracene dimer and trimer reveal that high-lying multiply excited charge transfer states have significant influences on both the formation and separation of the correlated triplet pair and can even enlarge the coupling for the latter process by 1 order of magnitude.

11.
J Phys Chem Lett ; 12(3): 1032-1039, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33470827

RESUMO

A new scheme is proposed to calculate the electronic couplings for photoinduced charge transfer and excitation energy transfer for both singlet and triplet states. In this scheme, the locally excited and charge-transfer states are constructed from the adiabatic ones by maximally localizing the particle (i.e., electron) and hole densities in terms of predefined molecular fragments. The construction process, after which the electronic couplings are directly obtained, is highly efficient and can be combined with various kinds of preliminary electronic structure calculations as long as the adiabatic excitation energies and transition densities are available. The method also applies to the systems with multiple charge or excitation centers. Its validity is demonstrated by the applications to the 6,13-dichloropentacene dimer and tetramer and the C60-Zn porphyrin dyad. The results reveal that the environment has a strong impact on the electronic couplings and can even enlarge those for long-range charge transfer by several orders of magnitude.

12.
J Phys Chem Lett ; 12(4): 1125-1130, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33475366

RESUMO

Insightful understanding of the light driven CO2 reduction reaction (CO2RR) mechanism on gold nanoparticles is one of the important issues in the plasmon mediated photocatalytic study. Herein, time-dependent density functional theory and reduced two-state model are adopted to investigate the photoinduced charge transfer in interfaces. According to the excitation energy and orbital coupling, the light driven mechanism of CO2RR on gold nanoparticles can be described as follows: the light induces electron excitation and then transfers to the physisorbed CO2, and CO2 can relax to a bent structure adsorbed on gold nanoparticles, and the adsorbed C-O bonds are dissociated finally. Moreover, our calculated results demonstrate that the s, p, and d electron excitations of gold nanoparticles are the major contribution for the CO2 adsorption and the C-O dissociation process, respectively. This work would promote the understanding of the light driven electron transfer and photocatalytic CO2RR on the noble metal.

13.
J Phys Chem Lett ; 11(16): 6593-6599, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32787232

RESUMO

Understanding the bimetallic interfacial effects on the catalytic CO2 reduction reaction (CO2RR) is an important and challenging issue. Herein, the geometric structure, electronic structure, and electrocatalytic property of Cu(submonolayer)/Au bimetallic interfaces are investigated by using density functional theory calculation. The results predict that the expansion of the Cu lattice can significantly modulate the CO2RR performance, the Cu(submonolayer)/Au interface has good surface activity promoting the reduction of CO2 to C2 compounds, and the final products of CO2RR on Cu/Au(111) and Cu/Au(100) surfaces are ethanol and a mixture of ethanol and ethylene, respectively. Furthermore, with regard to surface coverage and adsorption energy being two essential parameters for CO2RR, we demonstrate that the reaction of *CO and *CHO is the key process for obtaining the C2 products on the Cu/Au interface. This study offers a useful strategy for improving the surface activity and selectivity for CO2RR.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa