Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 506
Filtrar
1.
Mol Ther ; 32(6): 1875-1894, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38549378

RESUMO

Chimeric antigen receptor-T (CAR-T) cell has been developed as a promising agent for patients with refractory or relapsed lymphoma and leukemia, but not all the recipients could achieve a long-lasting remission. The limited capacity of in vivo expansion and memory differentiation post activation is one of the major reasons for suboptimal CAR-T therapeutic efficiency. Nitric oxide (NO) plays multifaceted roles in mitochondrial dynamics and T cell activation, but its function on CAR-T cell persistence and anti-tumor efficacy remains unknown. Herein, we found the continuous signaling from CAR not only promotes excessive NO production, but also suppressed S-nitrosoglutathione reductase (GSNOR) expression in T cells, which collectively led to increased protein S-nitrosylation, resulting in impaired mitochondrial fitness and deficiency of T cell stemness. Intriguingly, enforced expression of GSNOR promoted memory differentiation of CAR-T cell after immune activation, rendered CAR-T better resistance to mitochondrial dysfunction, further enhanced CAR-T cell expansion and anti-tumor capacity in vitro and in a mouse tumor model. Thus, we revealed a critical role of NO in restricting CAR-T cell persistence and functionality, and defined that GSNOR overexpression may provide a solution to combat NO stress and render patients with more durable protection from CAR-T therapy.


Assuntos
Imunoterapia Adotiva , Mitocôndrias , Receptores de Antígenos Quiméricos , Animais , Camundongos , Mitocôndrias/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/genética , Humanos , Imunoterapia Adotiva/métodos , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Linfócitos T/metabolismo , Linfócitos T/imunologia , Óxido Nítrico/metabolismo , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Ativação Linfocitária , Transdução de Sinais
2.
J Am Chem Soc ; 146(19): 13347-13355, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710023

RESUMO

Azide compounds are widely present in natural products and drug molecules, and their easy-to-transform characteristics make them widely used in the field of organic synthesis. The merging of transition-metal catalysis with radical chemistry offers a versatile platform for radical carboazidation of alkenes, allowing the rapid assembly of highly functionalized organic azides. However, the direct use of readily available hydrocarbon feedstocks as sp3-hybridized carbon radical precursors to participate in catalytic enantioselective carboazidation of alkenes remains a significant challenge that has yet to be addressed. Herein, we describe an iron-catalyzed asymmetric three-component radical carboazidation of electron-deficient alkenes by direct activation of aliphatic C-H bonds. This approach involves intermolecular hydrogen atom transfer between a hydrocarbon and an alkoxy/aryl carboxyl radical, leading to the formation of a carbon-centered radical. The resulting radical then reacts with electron-deficient alkenes to generate a new radical species that undergoes chiral iron-complex-mediated C-N3 bond coupling. An array of valuable chiral azides bearing a quaternary stereocenter were directly accessed from widely available chemical feedstocks, and their synthetic potential is further demonstrated through more facile transformations to give other valuable enantioenriched building blocks.

3.
J Am Chem Soc ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981037

RESUMO

Chiral acyclic α-tertiary amino ketones are widely present in various natural products and pharmaceuticals; however, the direct synthesis of this pharmacophore through a robust strategy still presents significant challenges. The emerging photocatalysis provides a powerful approach to construct chemical bonds that are difficult to form via a traditional two-electron pathway. Herein, we developed visible-light-induced chiral Lewis acid-catalyzed highly enantioselective acylation/alkylation of aldimines enabled by cooperative FLN (9-fluorenone) electron-shuttle catalysis via radical addition. An array of α-tertiary amino ketones, ß-amino alcohols, and chiral amines were achieved with high yields and good to excellent stereocontrol (87 examples, up to 84% yield, 96% ee). These products can be easily transformed into valuable and bioactive skeletons. Extensive control experiments, detailed mechanism studies, and density functional theory calculations elucidated the reaction process and highlighted the crucial role played by FLN.

4.
J Am Chem Soc ; 146(26): 18050-18060, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38878303

RESUMO

Transition-metal-catalyzed enantioselective nitrene transfer to sulfides has emerged as one of the most powerful strategies for rapid construction of enantioenriched sulfimides. However, achieving stereocontrol over highly active earth-abundant transition-metal nitrenoid intermediates remains a formidable challenge compared with precious metals. Herein, we disclose a chiral iron(II)/N,N'-dioxide-catalyzed enantioselective imidation of dialkyl and alkyl aryl sulfides using iminoiodinanes as nitrene precursors. A series of chiral sulfimides were obtained in moderate-to-good yields with high enantioselectivities (56 examples, up to 99% yield, 98:2 e.r.). The utility of this methodology was demonstrated by late-stage modification of complex molecules and synthesis of the chiral insecticide sulfoxaflor and the intermediates of related bioactive compounds. Based on experimental studies and theoretical calculations, a water-bonded high-spin iron nitrenoid species was identified as the key intermediate. The observed stereoselectivity was original from the steric repulsion between the amide unit of the ligand in the chiral cave and the bulky substituent of sulfides. Additionally, dioxazolones proved to be suitable acylnitrene precursors in the presence of an iron(III)/N,N'-dioxide complex, resulting in the formation of enantioselectivity-reversed sulfimides (14 examples, up to 81% yield, 97:3 e.r.).

5.
J Am Chem Soc ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38993029

RESUMO

Developing novel strategies for catalytic asymmetric dearomatization (CADA) reactions is highly valuable. Visible light-mediated photocatalysis is demonstrated to be a powerful tool to activate aromatic compounds for further synthetic transformations. Herein, a catalytic asymmetric dearomative [2 + 2] photocycloaddition/ring-expansion sequence of indoles with simple alkenes was reported, providing a facile access to enantioenriched cyclopenta[b]indoles with good to high yields and enantioselectivities by means of chiral lanthanide photocatalysis. This protocol exhibited a broad substrate scope and good functional group tolerance, as well as potential applications in the synthesis of bioactive molecules. Mechanistic studies, including control experiments, UV-vis absorption spectroscopy, emission spectroscopy, and DFT calculations, were carried out, shedding insights into the reaction mechanism and the origin of enantioselectivity.

6.
J Transl Med ; 22(1): 32, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184596

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T cells have shown significant activity in B-lineage malignancies. However, their efficacy in myeloid leukemia has not been successful due to unclear molecular mechanisms. METHODS: We conducted in vitro and in vivo experiments to investigate whether myeloid leukemia cells directly induce CAR down-regulation. Furthermore, we designed a CD33 CARKR in which all lysines in the cytoplasmic domain of CAR were mutated to arginine and verified through in vitro experiments that it could reduce the down-regulation of surface CARs and enhance the killing ability. Transcriptome sequencing was performed on various AML and ALL cell lines and primary samples, and the galectin-1-specific inhibitory peptide (anginex) successfully rescued the killing defect and T-cell activation in in vitro assays. RESULTS: CAR down-regulation induced by myeloid leukemia cells under conditions of low effector-to-tumor ratio, which in turn impairs the cytotoxicity of CAR T cells. In contrast, lysosomal degradation or actin polymerization inhibitors can effectively alleviate CAR down-regulation and restore CAR T cell-mediated anti-tumor functions. In addition, this study identified galectin-1 as a critical factor used by myeloid leukemia cells to induce CAR down-regulation, resulting in impaired T-cell activation. CONCLUSION: The discovery of the role of galectin-1 in cell surface CAR down-regulation provides important insights for developing strategies to restore anti-tumor functions.


Assuntos
Galectina 1 , Leucemia Mieloide , Humanos , Galectina 1/genética , Galectinas , Linhagem Celular , Linfócitos T
7.
Langmuir ; 40(19): 10313-10325, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38683169

RESUMO

Over an extended period of evolution and natural selection, a multitude of species developed a diverse array of biological interface features with specific functions. These biological structures provide a rich source of inspiration for the design of bionic structures on superhydrophobic surfaces. Understanding the functional mechanism of plant leaves is of paramount importance for the advancement of new engineering materials and the further promotion of engineering applications of bionic research. The hierarchical structure of microcrater-covered nanograss (MCNG) on the surface of E. helioscopia L. leaf provided the inspiration for the bionic MCNG surface, which was successfully prepared on a copper substrate by hybrid laser micromachining technology and chemical etching. The combined action of texture structure and surface chemistry resulted in a contact angle of 169° ± 1° for MCNG surface droplets and a rolling angle of less than 1°. Notably, the condensation-induced adhesion force does not augment with the increase of the temperature difference, which facilitated the shedding of hot droplets from the surface. The microscope observation revealed a high density of condensed droplets on the MCNG surface and the tangible jumping behavior of the droplets. The fabricated MCNG also demonstrated excellent antifrost/anti-icing abilities in low-temperature and high-humidity environments. Finally, the study confirmed the exceptional mechanical durability and reusability of the MCNG surface through various tests, including scratch damage, sandpaper wear, water flow impact and flushing, and condensation-drying cycle tests. The nanograss can be effectively protected within the microcrater structure. This research presents a promising approach for preventing and/or removing unwanted droplets in numerous engineering applications.


Assuntos
Euphorbia , Folhas de Planta , Propriedades de Superfície , Euphorbia/química , Folhas de Planta/química , Nanoestruturas/química , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula
8.
Langmuir ; 40(23): 12045-12058, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38814144

RESUMO

Given the challenges in accurately replicating the surface of the pufferfish, this study employed three-dimensional (3D) printing to create a model based on inverse modeling. The morphology of the pufferfish exhibits a streamlined configuration, characterized by a gradual widening from the anterior oral region to the central ocular area, followed by a progressive narrowing from the midabdominal region toward the caudal extremity. The RNG k-ε turbulence simulation results demonstrate that the streamlined body surface of the pufferfish diminishes differential pressure resistance. This enhancement promotes laminar flow formation, delays fluid separation, minimizes turbulence-induced vortices, and reduces frictional resistance. Moreover, the pufferfish's supple and uneven outer epidermis was simplified into a flexible, nonsmooth planar film to conduct fluid-solid coupling simulations. These revealed that the pufferfish's unique skin can absorb turbulent energy and minimize momentum transfer between the fluid and the solid film, lowering the fluid resistance during swimming. In summary, The high-efficiency swimming capacity of pufferfish stems not only from their streamlined body surface but also significantly from the unique structural characteristics and mechanical properties of their flexible skin. This research provides critical theoretical underpinnings for the design of functional bionic surfaces aimed at drag reduction.


Assuntos
Tetraodontiformes , Animais , Propriedades de Superfície , Impressão Tridimensional
9.
Langmuir ; 40(13): 7192-7204, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38503714

RESUMO

The anti-icing and drag-reduction properties of diverse microstructured surfaces have undergone extensive study over the past decade. Nonetheless, tough environments enforce stringent demands on the composite characteristics of superhydrophobic surfaces (SHS). In this study, fresh composite structures were fabricated on a metal substrate by nanosecond laser machining technology, drawing inspiration from the hardy plant Iridaceae. The prepared sample surface mainly consists of a periodic microrhombus array and irregular nanosheets. To comprehensively investigate the effect of its special structure on surface properties, three surfaces with different sizes of rhombic structures were used for comparative analysis, and the results show that the SH-S2 sample is optimal. This can significantly delay the freezing time by an impressive 1404 s at -10 °C while revealing the sample surface anti-icing strategy. In addition, the rheological experiments determined over 300 µm of slip length for the SH-S2 sample, and the drag reduction rate of the surface reaches nearly 40%, which is well aligned with the results of the delayed icing experiments. Finally, the mechanical durability of the SH-S2 surface was investigated through scratch damage, sandpaper abrasion, reparability trials, and icing and melting cycle tests. This research presents a new approach and methodology for the application of SHS on polar ship surfaces.

10.
Org Biomol Chem ; 22(13): 2510-2522, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38450421

RESUMO

Water possesses unique advantages, including abundance, environmental friendliness and mild effects. Undoubtedly, it is an ideal solvent or reagent in chemical syntheses. Water also shows unique abilities in catalytic asymmetric synthesis. It can accelerate reaction rates, improve diastereo- or enantioselectivities, initiate reactions, diversify chemo, diastereo- or enantioselectivities through various effects (hydrophobic, hydrogen bonding, protonation). Several reviews have demonstrated the positive effects of water in asymmetric synthesis. In this review, we summarize water-enabling strategies in the last decade, and focus on advances which reveal how water affects a reaction.

11.
Cell Mol Life Sci ; 80(3): 63, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781473

RESUMO

Adipose tissue CD11c+ myeloid cell is an independent risk factor associated with obesity and metabolic disorders. However, the underlying molecular basis remains elusive. Here, we demonstrated that liver kinase B1 (Lkb1), a key bioenergetic sensor, is involved in CD11c+ cell-mediated immune responses in diet-induced obesity. Loss of Lkb1 in CD11c+ cells results in obesity resistance but lower glucose tolerance, which accompanies tissue-specific immune abnormalities. The accumulation and CD80's expression of Lkb1 deficient adipose-tissue specific dendritic cells but not macrophages is restrained. Additionally, the balance of IL-17A and IFN-γ remarkably tips towards the latter in fat T cells and CD11c- macrophages. Mechanistically, IFN-γ promotes apoptosis of preadipocytes and inhibits their adipogenesis while IL-17A promotes the adipogenesis in vitro, which might account in part for the fat gain resistant phenotype. In summary, these findings reveal that Lkb1 is essential for fat CD11c+ dendritic cells responding to HFD exposure and provides new insights into the IL-17A/IFN-γ balance in HFD-induced obesity.


Assuntos
Proteínas Quinases Ativadas por AMP , Intolerância à Glucose , Resistência à Insulina , Obesidade , Animais , Camundongos , Tecido Adiposo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Intolerância à Glucose/metabolismo , Inflamação/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/complicações , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Interferon gama/metabolismo
12.
J Environ Manage ; 351: 119887, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38169255

RESUMO

Comprehensive regional remote analysis tends to neglect lakes in exorheic basins on the Qinghai-Tibetan Plateau (QTP), and a concurrent lack of discussions on whether there exist imbalanced explanations for the driving forces of both internal and external lakes is also present. We integrate multisourced lake datasets, high-resolution information, and available altimetry datasets to establish multiple mathematical models to meta-simulate lake volume changes, extend current lake variation datasets, and quantify the imbalance of variations and factors driving the water mass budget. The results showed that the primary cause of lake variations in QTP is net precipitation (57.75 ± 31.46%), followed by glacier runoff (33.53 ± 31.42%), and permafrost (8.34 ± 7.87%). Even though glacier runoff is currently considered as a weak factor of lake variation, heterogeneous results call for remaining attention in glacier-induced lake basins. Imbalance embodying in lake variability but not in contributions of driving factors, which calls for special lake management ways in different watersheds.


Assuntos
Lagos , Modelos Teóricos , Tibet , Camada de Gelo
13.
Angew Chem Int Ed Engl ; 63(1): e202314256, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37985963

RESUMO

The direct α-alkylation of acyclic carbonyls with nonactivated hydrocarbons through C(sp3 )-H functionalization is both extremely promising and notably challenging, especially when attempting to achieve enantioselectivity using iron-based catalysts. We have identified a robust chiral iron complex for the oxidative cross-coupling of 2-acylimidazoles with benzylic and allylic hydrocarbons, as well as nonactivated alkanes. The readily available and tunable N,N'-dioxide catalysts of iron in connection with oxidants exhibit precise asymmetric induction (up to 99 % ee) with good compatibility in moderate to good yields (up to 88 % yield). This protocol provides an elegant and straightforward access to optically active acyclic carbonyl derivatives starting from simple alkanes without prefunctionalization. Density functional theory (DFT) calculations and control experiments were made to gain insight into the nature of C-C bond formation and the origin of enantioselectivity. We propose a radical-radical cross-coupling process enabled by the immediate interconversion between chiral ferric species and ferrous species.

14.
Lancet Oncol ; 24(11): 1229-1241, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37863088

RESUMO

BACKGROUND: Relapses frequently occur following CD19-directed chimeric antigen receptor (CAR) T-cell treatment for relapsed or refractory B-cell acute lymphocytic leukaemia in children. We aimed to assess the activity and safety of sequential CD19-directed and CD22-directed CAR T-cell treatments. METHODS: This single-centre, single-arm, phase 2 trial, done at Beijing GoBroad Boren Hospital, Beijing, China, included patients aged 1-18 years who had relapsed or refractory B-cell acute lymphocytic leukaemia with CD19 and CD22 positivity greater than 95% and an Eastern Cooperative Oncology Group performance status of 0-2. Patients were initially infused with CD19-directed CAR T cells intravenously, followed by CD22-directed CAR T-cell infusion after minimal residual disease-negative complete remission (or complete remission with incomplete haematological recovery) was reached and all adverse events (except haematological adverse events) were grade 2 or better. The target dose for each infusion was 0·5 × 106 to 5·0 × 106 cells per kg. The primary endpoint was objective response rate at 3 months after the first infusion. Secondary endpoints were duration of remission, event-free survival, disease-free survival, overall survival, safety, pharmacokinetics, and B-cell quantification. The prespecified activity analysis included patients who received the target dose and the safety analysis included all treated patients. This study is registered with ClinicalTrials.gov, NCT04340154, and enrolment has ended. FINDINGS: Between May 28, 2020, and Aug 16, 2022, 81 participants were enrolled, of whom 31 (38%) were female and 50 (62%) were male. Median age was 8 years (IQR 6-10), all patients were Asian. All 81 patients received the first infusion and 79 (98%) patients received sequential infusions, CD19-directed CAR T cells at a median dose of 2·7 × 106 per kg (IQR 1·1 × 106 to 3·7 × 106) and CD22-directed CAR T cells at a median dose of 2·2 × 106 per kg (1·1 × 106 to 3·7 × 106), with a median interval of 39 days (37-41) between the two infusions. 62 (77%) patients received the target dose, including two patients who did not receive CD22 CAR T cells. At 3 months, 60 (97%, 95% CI 89-100) of the 62 patients who received the target dose had an objective response. Median follow-up was 17·7 months (IQR 11·4-20·9). 18-month event-free survival for patients who received the target dose was 79% (95% CI 66-91), duration of remission was 80% (68-92), and disease-free survival was 80% (68-92) with transplantation censoring; overall survival was 96% (91-100). Common adverse events of grade 3 or 4 between CD19-directed CAR T-cell infusion and 30 days after CD22-directed CAR T-cell infusion included cytopenias (64 [79%] of 81 patients), cytokine release syndrome (15 [19%]), neurotoxicity (four [5%]), and infections (five [6%]). Non-haematological adverse events of grade 3 or worse more than 30 days after CD22-directed CAR T-cell infusion occurred in six (8%) of 79 patients. No treatment-related deaths occurred. CAR T-cell expansion was observed in all patients, with a median peak at 9 days (IQR 7-14) after CD19-directed and 12 days (10-15) after CD22-directed CAR T-cell infusion. At data cutoff, 35 (45%) of 77 evaluable patients had CAR transgenes and 59 (77%) had B-cell aplasia. INTERPRETATION: This sequential strategy induced deep and sustained responses with an acceptable toxicity profile, and thus potentially provides long-term benefits for children with this condition. FUNDING: The National Key Research & Development Program of China, the CAMS Innovation Fund for Medical Sciences (CIFMS), and the Non-Profit Central Research Institute Fund of Chinese Academy of Medical Sciences. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Assuntos
Leucemia Linfocítica Crônica de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Humanos , Masculino , Criança , Feminino , Receptores de Antígenos Quiméricos/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Imunoterapia Adotiva/efeitos adversos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Terapia Baseada em Transplante de Células e Tecidos , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/uso terapêutico
15.
J Am Chem Soc ; 145(28): 15611-15618, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37406347

RESUMO

Asymmetric epoxidation of alkenes catalyzed by nonheme chiral Mn-O and Fe-O catalysts has been well established, but chiral Co-O catalysts for the purpose remain virtually undeveloped due to the oxo wall. Herein is first reported a chiral cobalt complex to realize the enantioselective epoxidation of cyclic and acyclic trisubstituted alkenes by using PhIO as the oxidant in acetone, wherein the tetra-oxygen-based chiral N,N'-dioxide with sterically hindered amide subunits plays a crucial role in supporting the formation of the Co-O intermediate and enantioselective electrophilic oxygen transfer. Mechanistic studies, including HRMS measurements, UV-vis absorption spectroscopy, magnetic susceptibility, as well as DFT calculations, were carried out, confirming the formation of Co-O species as a quartet Co(III)-oxyl tautomer. The mechanism and the origin of enantioselectivity were also elucidated based on control experiments, nonlinear effects, kinetic studies, and DFT calculations.

16.
J Am Chem Soc ; 145(8): 4808-4818, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795915

RESUMO

The textbook alkene halogenation reaction establishes straightforward access to vicinal dihaloalkanes. However, a robust catalytic method for dihalogenizing electron-deficient olefins in an enantioselective manner is still under development, and its mechanism remains controversial. Herein, we disclose efficient regio-, anti-diastereo-, and enantioselective dibromination, bromochlorination, and dichlorination reactions of enones catalyzed by a chiral N,N'-dioxide/Yb(OTf)3 complex. With the combination of electrophilic halogen and halide salts as halogenating agents, an array of homo- and heterodihalogenated derivatives is achieved in moderate to good enantioselectivities. Moreover, DFT calculations reveal that a novel triplet halo-radical pylon intermediate is probable in accounting for the exclusive regio- and anti-diastereoselectivity.

17.
J Am Chem Soc ; 145(48): 26318-26327, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37962558

RESUMO

Owing to the mild generation methods, arynes have been widely used in synthetic chemistry. However, achieving asymmetric organocatalytic reactions with arynes remains a formidable and infrequent challenge, primarily because these neutral and transient species tend to spontaneously quench. To address this issue, a solid-liquid phase-transfer strategy is devised in which the generation speed of arynes could be controlled by the in situ generated fluoride-based chiral phase-transfer catalyst. In this study, we present a catalytic enantioselective nucleophilic addition reaction involving arynes, utilizing an amino amide-based guanidinium salt QG•X. Furthermore, we demonstrate the broad compatibility of this reaction with various arynes and cyclic/acyclic ß-keto amides, leading to the creation of diverse α-aryl quaternary stereocenters with good stereoselectivity. Mechanistic investigations have uncovered the potential involvement of a chiral intramolecular cationic-anionic pair and HF during the ion exchange between QG•X and CsF for nucleophile activation and aryne generation. Additionally, DFT calculations suggested that the observed high levels of enantioselectivity can be attributed to steric repulsion and the cumulative noncovalent interactions between the catalysts and substrates.

18.
Nat Immunol ; 12(6): 544-50, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21532575

RESUMO

The molecular mechanisms that underlie T cell quiescence are poorly understood. Here we report that mature naive CD8(+) T cells lacking the transcription factor Foxp1 gained effector phenotype and function and proliferated directly in response to interleukin 7 (IL-7) in vitro. Foxp1 repressed expression of the IL-7 receptor α-chain (IL-7Rα) by antagonizing Foxo1 and negatively regulated signaling by the kinases MEK and Erk. Acute deletion of Foxp1 induced naive T cells to gain an effector phenotype and proliferate in lympho-replete mice. Foxp1-deficient naive CD8(+) T cells proliferated even in lymphopenic mice deficient in major histocompatibility complex class I. Our results demonstrate that Foxp1 exerts essential cell-intrinsic regulation of naive T cell quiescence, providing direct evidence that lymphocyte quiescence is achieved through actively maintained mechanisms that include transcriptional regulation.


Assuntos
Proliferação de Células , Fatores de Transcrição Forkhead/imunologia , Proteínas Repressoras/imunologia , Linfócitos T/imunologia , Animais , Butadienos/farmacologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/imunologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Citometria de Fluxo , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Imidazóis/farmacologia , Immunoblotting , Interleucina-7/farmacologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/imunologia , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Nitrilas/farmacologia , Ligação Proteica , Piridinas/farmacologia , Receptores de Interleucina-7/genética , Receptores de Interleucina-7/imunologia , Receptores de Interleucina-7/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
19.
Acc Chem Res ; 55(3): 415-428, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35029358

RESUMO

α-Diazocarbonyl compounds serve as nucleophiles, dipoles, carbene precursors, and rare electrophiles, enabling a vast array of organic transformations under the influence of metal catalysts. Among them, rearrangement processes are attractive and provide straightforward and efficient accesses to one-carbon extension adducts or heteroatom-containing molecules. The reactions occur upon the release of dinitrogen after nucleophilic addition or before ylide formation. Although significant progress has been made for these two types of rearrangement reactions, the issue of enantiocontrol is challenging because the final optically enriched products are generated via multistep transformations and the inherent spacial arrangement of the intermediates has more or less influence on the regio- and enantioselectivity.In this Account, we collected several rearrangements of α-diazocarbonyl compounds, showcasing the efficient catalysts and tailored strategies for tackling enantioselective varieties of these two types of rearrangement reactions. Our research group initiated the catalytic asymmetric reactions of α-diazocarbonyl compounds during the development of chiral Feng N,N'-dioxide-metal complex catalysts and others. As a kind of useful chiral Lewis acid catalyst chiral N,N'-dioxide-metal complexes are favorable for the activation of various carbonyl compounds, accelerating the diastereo- and enantioselective nucleophilic addition of α-diazoesters and the sequential rearrangements in either an intermolecular or intramolecular manner. Aldehydes, acyclic and cyclic ketone derivatives, and α,ß-unsaturated ketones could participate in efficient asymmetric homologation reactions, and an obvious ligand-acceleration effect is observed in these processes. For example, the Roskamp-Feng reaction of aldehydes gives optically active ß-ketoesters through a H-shift, overwhelming the aryl group shift or oxygen attack. The shift preference and enantiocontrol in the homologation of acyclic and cyclic ketone derivatives could be under excellent control of the chiral catalysts. An unusual electrophilic α-amination of aryl/alkyl ketones and even a complicated homologation/dyotropic rearrangement/interconversion/[3 + 2] cycloaddition cascade used to construct dimeric polycyclic compounds were discovered as a result of the selection of chiral ligands and additives. On the basis of the understanding of the interaction of the functional group with N,N'-dioxide-metal complexes in catalysis and the key enantio-determining issues in ylide-based rearrangements, we designed new α-diazocarbonyl compounds by introducing a pyrazole-1-carboxyl group as the acceptor unit, which could benefit the formation of both carbenoid species and the chiral catalyst-bound ylides to deliver stereoselectivity. Taking advantage of Ni(II) or Co(II) complexes of Feng N,N'-dioxide ligands, we realized several kinds of enantioselective [2,3]-sigmatropic rearrangements, such as the Doyle-Kirmse reaction with allylic sulfides or selenides, [2,3]-Stevens rearrangements of vinyl-substituted α-diazo pyrazoleamides with thioacetates, Sommelet-Hauser rearrangements of aryl-substituted α-diazo pyrazoleamides with thioamides, and thio-Claisen rearrangements of 2-thio-indoles as well. Moreover, this strategy was shown to be applicable to highly γ-selective and enantioselective insertion into N-H bonds of secondary amines with vinyl-substituted α-diazo pyrazoleamides.


Assuntos
Aldeídos , Cetonas , Aldeídos/química , Catálise , Cetonas/química , Ácidos de Lewis , Metais/química
20.
Glob Chang Biol ; 29(11): 3072-3084, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36854491

RESUMO

Vegetation response to soil and atmospheric drought has raised extensively controversy, however, the relative contributions of soil drought, atmospheric drought, and their compound droughts on global vegetation growth remain unclear. Combining the changes in soil moisture (SM), vapor pressure deficit (VPD), and vegetation growth (normalized difference vegetation index [NDVI]) during 1982-2015, here we evaluated the trends of these three drought types and quantified their impacts on global NDVI. We found that global VPD has increased 0.22 ± 0.05 kPa·decade-1 during 1982-2015, and this trend was doubled after 1996 (0.32 ± 0.16 kPa·decade-1 ) than before 1996 (0.16 ± 0.15 kPa·decade-1 ). Regions with large increase in VPD trend generally accompanied with decreasing trend in SM, leading to a widespread increasing trend in compound droughts across 37.62% land areas. We further found compound droughts dominated the vegetation browning since late 1990s, contributing to a declined NDVI of 64.56%. Earth system models agree with the dominant role of compound droughts on vegetation growth, but their negative magnitudes are considerably underestimated, with half of the observed results (34.48%). Our results provided the evidence of compound droughts-induced global vegetation browning, highlighting the importance of correctly simulating the ecosystem-scale response to the under-appreciated exposure to compound droughts as it will increase with climate change.


Assuntos
Secas , Ecossistema , Solo , Mudança Climática
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa