Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 39(26): 9230-9238, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37342894

RESUMO

Interfacial engineering is a critical pathway for modulating the self-assembled nanostructures of block copolymers (BCPs) during solvent exchange. Herein, we demonstrated the generation of different stacked lamellae of polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) nanostructures during solvent exchange by using phosphotungstic acid (PTA) or PTA/NaCl aqueous solution as the nonsolvent. The participation of PTA in the confined microphase separation of PS-b-P2VP in droplets increases the volume fraction of P2VP and decreases the tension at the oil/water interface. Moreover, the addition of NaCl to the PTA solution can further increase the surface coverage of P2VP/PTA on droplets. All factors impact the morphology of assembled BCP nanostructures. In the presence of PTA, ellipsoidal particles composed of alternatively stacked lamellae of PS and P2VP were formed (named BP), whereas, in the coexistence of PTA and NaCl, they changed to stacked disks with PS-core-P2VP-shell (called BPN). The different structures of assembled particles induce their different stabilities in solvents and different dissociation conditions as well. The dissociation of BP particles was easy because PS chains were only entangled together which can be swollen in toluene or chloroform. However, the dissociation of BPN was hard, requiring an organic base in hot ethanol. The structural difference in BP and BPN particles further extended to their dissociated disks, which makes the cargo (like R6G) loaded on these disks to show a different stability in acetone. This study demonstrated that a subtle structural change can greatly affect their properties.

2.
Environ Sci Technol ; 57(18): 7298-7308, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37116217

RESUMO

Fouling-resistant surfaces are needed for various environmental applications. Inspired by superhydrophilic N-oxide-based osmolytes in saltwater fish, we demonstrate the use of a trimethylamine N-oxide (TMAO) analogue for constructing fouling-resistant surfaces. The readily synthesized N-oxide monomer of methacrylamide is grafted to filtration membrane surfaces by surface-initiated atom transfer radical polymerization (SI-ATRP). Successful grafting of the amine N-oxide brush layer as confirmed by material characterization endows the surface with increased hydrophilicity, reduced charge, and decreased roughness. Notably, the introduction of the N-oxide layer does not compromise transport properties, i.e., water permeability and water-salt selectivity. Moreover, the modified membrane exhibits improved antifouling properties with a lower flux decline (32.1%) and greater fouling reversibility (18.55%) than the control sample (45.4% flux decline and 3.26% fouling reversibility). We further evaluate foulant-membrane interaction using surface plasmon resonance (SPR) to relate the reduced fouling tendency to the synergic effects of surface characteristic changes after amine N-oxide modification. Our results demonstrate the promise and potential of the N-oxide-based polymer brushes for the design of fouling resistance surfaces for a variety of emerging environmental applications.


Assuntos
Óxidos , Polímeros , Animais , Polímeros/farmacologia , Água , Aminas , Propriedades de Superfície
3.
Langmuir ; 38(41): 12441-12449, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36196878

RESUMO

The generation of inverse micellar nanostructures, especially those with open channels, using commercially available diblock copolymers (BCP), is vital for their wide applications in drug delivery and catalyst templating. However, the rigid requirements for forming inverse morphologies, such as the highly asymmetric molecular structures, the semicrystalline motifs, and concentrated solutions of diblock copolymers, represent obstacles to the development of successful strategies. In this study, the inverse polystyrene-block-poly(2-vinylpyridine) (PS30K-b-P2VP8.5K) micelles, i.e., the hexasomes with p6mm lattice, were generated through a modified solvent exchange via adding d-tartaric acid (d-TA) in the nonsolvent. Various intermediate morphologies have been identified with the change of d-TA concentration. Interestingly, in the high d-TA concentration (∼20 mg/mL), the hexasomes with close-packed hoops changed to mesoporous spheres with regularly packed perpendicular cylindrical channels (VD-TA: VBCP 6:100), and further to the mesoporous spheres with gyri-like open pores (VD-TA: VBCP > 15:100) with the increasing acidity in the mixed solvent. This study presents a simple and economical pathway for fabricating PS30K-b-P2VP8.5K hexasomes and first demonstrates these hexasomes can be modified to the morphology with open channels that will benefit their further applications.

4.
Nat Mater ; 18(11): 1235-1243, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31209387

RESUMO

Creating well-defined single-crystal textures in materials requires the biaxial alignment of all grains into desired orientations, which is challenging to achieve in soft materials. Here we report the formation of single crystals with rigorously controlled texture over macroscopic areas (>1 cm2) in a soft mesophase of a columnar discotic liquid crystal. We use two modes of directed self-assembly, physical confinement and magnetic fields, to achieve control of the orientations of the columnar axes and the hexagonal lattice along orthogonal directions. Field control of the lattice orientation emerges in a low-temperature phase of tilted discogens that breaks the field degeneracy around the columnar axis present in non-tilted states. Conversely, column orientation is controlled by physical confinement and the resulting imposition of homeotropic anchoring at bounding surfaces. These results extend our understanding of molecular organization in tilted systems and may enable the development of a range of new materials for distinct applications.

5.
Environ Sci Technol ; 54(15): 9640-9651, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32598838

RESUMO

Increased demand for highly selective and energy-efficient separations processes has stimulated substantial interest in emerging two-dimensional (2D) nanomaterials as a potential platform for next-generation membranes. However, persistently poor separation performance continues to hinder the viability of many novel 2D-nanosheet membranes in desalination applications. In this study, we examine the role of the lamellar structure of 2D membranes on their performance. Using self-fabricated molybdenum disulfide (MoS2) membranes as a platform, we show that the separation layer of 2D nanosheet frameworks not only fails to demonstrate water-salt selectivity but also exhibits low rejection toward dye molecules. Moreover, the MoS2 membranes possess a molecular weight cutoff comparable to its underlying porous support, implying negligible selectivity of the MoS2 layer. By tuning the nanochannel size through intercalation with amphiphilic molecules and analyzing mass transport in the lamellar structure using Monte Carlo simulations, we reveal that small imperfections in the stacking of MoS2 nanosheets result in the formation of catastrophic microporous defects. These defects lead to a precipitous reduction in the selectivity of the lamellar structure by negating the interlayer sieving mechanism that prevents the passage of large penetrants. Notably, the imperfect stacking of nanosheets in the MoS2 membrane was further verified using 2D X-ray diffraction measurements. We conclude that developing a well-controlled fabrication process, in which the lamellar structure can be carefully tuned, is critical to achieving defect-free and highly selective 2D desalination membranes.


Assuntos
Molibdênio , Nanoestruturas , Dissulfetos , Membranas Artificiais
6.
Proc Natl Acad Sci U S A ; 114(46): E9793-E9801, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29078354

RESUMO

The cytotoxicity of 2D graphene-based nanomaterials (GBNs) is highly important for engineered applications and environmental health. However, the isotropic orientation of GBNs, most notably graphene oxide (GO), in previous experimental studies obscured the interpretation of cytotoxic contributions of nanosheet edges. Here, we investigate the orientation-dependent interaction of GBNs with bacteria using GO composite films. To produce the films, GO nanosheets are aligned in a magnetic field, immobilized by cross-linking of the surrounding matrix, and exposed on the surface through oxidative etching. Characterization by small-angle X-ray scattering and atomic force microscopy confirms that GO nanosheets align progressively well with increasing magnetic field strength and that the alignment is effectively preserved by cross-linking. When contacted with the model bacterium Escherichia coli, GO nanosheets with vertical orientation exhibit enhanced antibacterial activity compared with random and horizontal orientations. Further characterization is performed to explain the enhanced antibacterial activity of the film with vertically aligned GO. Using phospholipid vesicles as a model system, we observe that GO nanosheets induce physical disruption of the lipid bilayer. Additionally, we find substantial GO-induced oxidation of glutathione, a model intracellular antioxidant, paired with limited generation of reactive oxygen species, suggesting that oxidation occurs through a direct electron-transfer mechanism. These physical and chemical mechanisms both require nanosheet penetration of the cell membrane, suggesting that the enhanced antibacterial activity of the film with vertically aligned GO stems from an increased density of edges with a preferential orientation for membrane disruption. The importance of nanosheet penetration for cytotoxicity has direct implications for the design of engineering surfaces using GBNs.


Assuntos
Antibacterianos/farmacologia , Grafite/química , Grafite/farmacologia , Nanoestruturas/química , Óxidos/química , Antibacterianos/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Transporte de Elétrons , Escherichia coli/efeitos dos fármacos , Glutationa/metabolismo , Imobilização , Campos Magnéticos , Microscopia de Força Atômica , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
7.
Proc Natl Acad Sci U S A ; 114(45): E9437-E9444, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078379

RESUMO

The interaction of fields with condensed matter during phase transitions produces a rich variety of physical phenomena. Self-assembly of liquid crystalline block copolymers (LC BCPs) in the presence of a magnetic field, for example, can result in highly oriented microstructures due to the LC BCP's anisotropic magnetic susceptibility. We show that such oriented mesophases can be produced using low-intensity fields (<0.5 T) that are accessible using permanent magnets, in contrast to the high fields (>4 T) and superconducting magnets required to date. Low-intensity field alignment is enabled by the addition of labile mesogens that coassemble with the system's nematic and smectic A mesophases. The alignment saturation field strength and alignment kinetics have pronounced dependences on the free mesogen concentration. Highly aligned states with orientation distribution coefficients close to unity were obtained at fields as small as 0.2 T. This remarkable field response originates in an enhancement of alignment kinetics due to a reduction in viscosity, and increased magnetostatic energy due to increases in grain size, in the presence of labile mesogens. These developments provide routes for controlling structural order in BCPs, including the possibility of producing nontrivial textures and patterns of alignment by locally screening fields using magnetic nanoparticles.

8.
Angew Chem Int Ed Engl ; 57(28): 8493-8497, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29697893

RESUMO

The graft-through synthesis of Janus graft block copolymers (GBCPs) from branched macromonomers composed of various combinations of homopolymers is presented. Self-assembly of GBCPs resulted in ordered nanostructures with ultra-small domain sizes down to 2.8 nm (half-pitch). The grafted architecture introduces an additional parameter, the backbone length, which enables control over the thermomechanical properties and processability of the GBCPs independently of their self-assembled nanostructures. The simple synthetic route to GBCPs and the possibility of using a variety of polymer combinations contribute to the universality of this technique.

9.
Langmuir ; 33(40): 10690-10697, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28885029

RESUMO

We present a strategy for robustly cross-linking self-assembled lamellar mesophases made from plant-derived materials to generate polymer nanosheets decorated with a high density of functional groups. We formulate a supramoleclar complex by hydrogen-bonding conjugated linoleic acid moieties to a structure-directing tribasic aromatic core. The resulting constructs self-assemble into a thermotropic lamellar mesophase. Photo-cross-linking the mesophase with the aid of an acrylate cross-linker yields a polymeric material with high-fidelity retention of the lamellar mesophase structure. Transmission electron microscopy images demonstrate the preservation of the large area, highly ordered layered nanostructures in the polymer. Subsequent extraction of the tribasic core and neutralization of the carboxyl groups by NaOH result in exfoliation of polymer nanosheets with a uniform thickness of ∼3 nm. The nanosheets have a large specific area of ∼800 m2/g, are decorated by negatively charged carboxylate groups at a density of 4 nm-2, and exhibit the ability to readily adsorb positively charged colloidal particles. The strategy as presented combines supramolecular self-assembly with the use of renewable or sustainably derived materials in a scalable manner. The resulting nanosheets have potential for use as adsorbents and, with further development, rheology modifiers.

10.
Macromol Rapid Commun ; 36(13): 1290-6, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25959572

RESUMO

The fabrication of block copolymer (BCP) thin films is reported with vertically aligned cylindrical domains using continuous electrospray deposition onto bare wafer surfaces. The out-of-plane orientation of hexagonally packed styrene cylinders is achieved in the "fast-wet" deposition regime in which rapid evaporation of the solvent in deposited droplets of polymer solution drives the vertical alignment of the self-assembled structure. Thermally activated crosslinking of the polybutadiene matrix provides kinetic control of the morphology, freezing the vertical alignment and preventing relaxation of the system to its preferred parallel orientation on the nontreated substrate. Physically continuous vertically oriented domains can be achieved over several micrometers of film thickness. The ability of electrospray deposition to fabricate well-ordered and aligned BCP films on nontreated substrates, the low amount of material used relative to spin-coating, and the continuous nature of the deposition may open up new opportunities for BCP thin films.


Assuntos
Butadienos/química , Elastômeros/química , Membranas Artificiais , Nanoestruturas/ultraestrutura , Poliestirenos/química , Acetona , Clorofórmio , Cristalização , Técnicas Eletroquímicas , Cinética , Teste de Materiais , Nanoestruturas/química , Tamanho da Partícula , Solventes , Propriedades de Superfície , Tolueno
11.
ACS Macro Lett ; 13(5): 550-557, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38634712

RESUMO

Highly ordered, network-nanostructured polymers offer compelling geometric features and application potential. However, their practical utilization is hampered by the restricted accessibility. Here, we address this challenge using commercial Pluronic surfactants with a straightforward modification of tethering polymerizable groups. By leveraging lyotropic self-assembly, we achieve facile production of double-gyroid mesophases, which are subsequently solidified via photoinduced cross-linking. The exceptionally ordered periodicities of Ia3d symmetry in the photocured polymers are unambiguously confirmed by synchrotron small-angle X-ray scattering (SAXS), which can capture single-crystal-like diffraction patterns. Electron density maps reconstructed from SAXS data complemented by transmission electron microscopy analysis further elucidate the real-space gyroid assemblies. Intriguingly, by tuning the cross-linking through thiol-acrylate chemistry, the mechanical properties of the polymer are modulated without compromising the integrity of Ia3d assemblies. The 3-D percolating gyroid nanochannels demonstrate an ionic conductivity that surpasses that of disordered structures, offering promising prospects for scalable fabrication.

12.
Nat Commun ; 15(1): 2693, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538607

RESUMO

Enhancing the device electroluminescence quantum efficiency (EQEEL) is a critical factor in mitigating non-radiative voltage losses (VNR) and further improving the performance of organic solar cells (OSCs). While the common understanding attributes EQEEL in OSCs to the dynamics of charge transfer (CT) states, persistent efforts to manipulate these decay dynamics have yielded limited results, with the EQEEL of high-efficiency OSCs typically remaining below 10-2%. This value is considerably lower than that observed in high efficiency inorganic photovoltaic devices. Here, we report that EQEEL is also influenced by the dissociation rate constant of singlet states (kDS). Importantly, in contrast to the traditional belief that advocates maximizing kDS for superior photovoltaic quantum efficiency (EQEPV), a controlled reduction in kDS is shown to enhance EQEEL without compromising EQEPV. Consequently, a promising experimental approach to address the VNR challenge is proposed, resulting in a significant improvement in the performance of OSCs.

13.
Chemphyschem ; 14(9): 1801-5, 2013 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-23674406

RESUMO

Forming micelles: The first in situ AFM study of Gibbs films of semifluorinated alkanes at liquid crystal/air interfaces is presented. The Gibbs films self-organize in a hexagonal close packing of surface micelles with shapes and lateral dimensions that are similar to micelles forming on aqueous and solid surfaces. It is concluded that he formation of surfaces micelles and their self-organization in large-area dense hexagonal arrays are intrinsic properties of semifluorinated alkane molecules.

14.
Langmuir ; 29(14): 4640-6, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23506093

RESUMO

Swelling of block copolymers is a complex process in which deformation and microphase separation couple together. Here we demonstrated that nanoparticles of block copolymers and polymer composites which have a large variety of phase separation patterns and different shapes can be generated through swelling process. Particularly, we focused on the swelling process of lamellae-forming diblock copolymer nanoparticles and first observed the formation of terrace edges in diblock copolymer nanoparticles as a metastable microstructure in swelling. Moreover, the trace amount of swelling solvent shows a significant influence on the shape of polymer nanoparticles, leading to block copolymer nanodisks and snowman-like composite nanoparticles.

15.
J Phys Chem B ; 127(49): 10636-10646, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38032234

RESUMO

Effective retention of phosphoric acid (PA) is crucial for the efficient operation of fuel cells based on PA-doped polymeric membranes, which is highly challenging due to the moisture-induced loss of PA. Therefore, a comprehensive understanding of the interplay among PA, functional groups, and water is essential for designing membrane materials. Using density functional theory (DFT) calculations and molecular dynamics (MD) simulations, we unveil the remarkable capability of zwitterions to effectively sequester PA, thereby unlocking the potential for fuel cell optimization. Our DFT calculations show that zwitterions, termed "charged proton-accepting bases", exhibit stronger interactions with PA compared to the traditional neutral proton-accepting bases. Furthermore, the presence of water amplifies such a discrepancy, with the zwitterion-PA interactions playing a dominant role in the zwitterion-PA-water cluster due to the strongest affinity of zwitterions to PA. Conversely, the ability of neutral bases to retain PA is significantly attenuated by moisture as the interactions between water and PA surpass those between neutral bases and PA. The strong zwitterion-PA associations arise primarily from the formation of multiple hydrogen bonds. Furthermore, MD simulations reveal the uniform distribution of zwitterions in aqueous environments and their pronounced affinities for both PA and water. In contrast, neutral bases tend to aggregate, interacting limitedly with PA. These findings underscore the effectiveness of zwitterions in boosting PA retention in fuel cells.

16.
Sci Adv ; 8(11): eabm5899, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35294234

RESUMO

Organic solvent-stable membranes exhibiting strong selectivity and high permeance have the potential to transform energy utilization in chemical separation processes. A key goal is developing materials with uniform, well-defined pores at the 1-nm scale, with sizes that can be tuned in small increments with high fidelity. Here, we demonstrate a class of organic solvent-stable nanoporous membranes derived from self-assembled liquid crystal mesophases that display such characteristics and elucidate their transport properties. The transport-regulating dimensions are defined by the mesophase geometry and can be controlled in increments of ~0.1 nm by modifying the chemical structure of the mesogen or the composition of the mesophase. The highly ordered nanostructure affords previously unidentified opportunities for the systematic design of organic solvent nanofiltration membranes with tailored selectivity and permeability and for understanding and modeling rejection in nanoscale flows. Hence, these membranes represent progress toward the goal of enabling precise organic solvent nanofiltration.

17.
ACS Nano ; 16(12): 21139-21151, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36516967

RESUMO

Soft materials with self-assembled networks possess saddle-shaped interfaces with distributed negative Gaussian curvatures. The ability to stabilize such a geometry is critically important for various applications but can be challenging due to the possibly "deficient" packing of the building blocks. This nontrivial challenge has been manifested, for example, by the limited availability of cross-linkable bicontinuous cubic (Q) liquid crystals (LCs), which can be utilized to fabricate compelling polymers with networked nanochannels uniformly sized at ∼1 nm. Here, we devise a facile approach to stabilizing cross-linkable Q mesophases by leveraging the synergistic self-assembly from pairs of scalably synthesized polymerizable amphiphiles. Hybridization of the molecular geometries by mixing significantly increases the propensity of the local deviations in the interfacial curvature specifically required for Q assemblies. "Normal" (type 1) double gyroid LCs possessing 1 nm ionic channels conforming to minimal surfaces can be formulated by simultaneous hydration of the amphiphile mixtures, as opposed to the formation of hexagonal or lamellar mesophases exhibited by the single-amphiphile systems, respectively. Fixation of the bicontinuous network in polymers via radical polymerization has been efficaciously facilitated by the presence of the bifunctional polymerizable groups in one of the employed amphiphiles. High-fidelity lock-in of the ordered continuous 1 nm channels has been unambiguously confirmed by the observation of single-crystal-like diffraction patterns from synchrotron small-angle X-ray scattering and large-area periodicities by transmission electron microscopy. The produced polymeric materials exhibit the required mechanical integrity as well as chemical robustness in a variety of organic solvents that benefit their practical applications for selective transport of ions and molecules.

18.
Langmuir ; 27(23): 14240-7, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22004408

RESUMO

We apply the concept of wettability transition to manipulate the morphology and entrapment of polymer nanostructures inside cylindrical nanopores of anodic aluminum oxide (AAO) membranes. When AAO/polystyrene (PS) hybrids, i.e., AAO/PS nanorods or AAO/PS nanotubes, are immersed into a polyethylene glycol (PEG) reservoir above the glass transition temperature of PS, a wettability transition from wetting to nonwetting of PS can be triggered due to the invasion of the more wettable PEG melt. The wettability transition enables us to develop a nondestructive method to entrap hemispherically capped nanorods inside nanopores. Moreover, we can obtain single nanorods with the desired aspect ratio by further dissolving the AAO template, in contrast to the drawbacks of nonuniformity or destructiveness from the conventional ultrasonication method. In the case of AAO/PS nanotubes, the wettability transition induced dewetting of PS nanotube walls results in the disconnection and entrapment of nonwetting PS domains (i.e., nanospheres, nanocapsules, or capped nanorods). Moreover, PEG is then washed to recover the pristine wettability of PS on the alumina surface; further annealing of the PS nanospheres inside AAO nanopores under vacuum can generate some unique nanostructures, particularly semicylindrical nanorods.


Assuntos
Óxido de Alumínio/química , Nanoestruturas/química , Polietilenoglicóis/química , Poliestirenos/química , Tamanho da Partícula , Propriedades de Superfície , Molhabilidade
19.
Adv Mater ; 33(42): e2103755, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34477247

RESUMO

Stretchable ionic conductors are appealing for tissue-like soft electronics, yet suffer from a tardy mechanoelectric response due to their poor modulation of ionic conduction arising from intrinsic homogeneous soft chain network. Here, a highly robust ionotronic fiber is designed by synergizing ionic liquid and liquid crystal elastomer with alternate rigid mesogen units and soft chain spacers, which shows an unprecedented strain-induced ionic conductivity boost (≈103 times enhanced as stretched to 2000% strain). Such a surprisingly high enhancement is attributed to the formation of microphase-separated low-tortuosity ion-conducting nanochannels guided by strain-induced emergence of aligned smectic mesophases, thus allowing for ultrafast ion transport that resembles the role of "swimming lanes." Intriguingly, the boosting conductivity even reverses Pouillet's Law-dictated resistance increase at certain strains, leading to unique waveform-discernible strain sensing. Moreover, the fiber retains thermal actuation properties with a maximum of 70% strain changes upon heating, and enables integrated self-perception and actuation. The findings offer a promising molecular engineering route to mechanically modulate the ion transport behavior of ionic conductors toward advanced ionotronic applications.

20.
Nat Commun ; 12(1): 6679, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795261

RESUMO

The high voltage losses ([Formula: see text]), originating from inevitable electron-phonon coupling in organic materials, limit the power conversion efficiency of organic solar cells to lower values than that of inorganic or perovskite solar cells. In this work, we demonstrate that this [Formula: see text] can in fact be suppressed by controlling the spacing between the donor (D) and the acceptor (A) materials (DA spacing). We show that in typical organic solar cells, the DA spacing is generally too small, being the origin of the too-fast non-radiative decay of charge carriers ([Formula: see text]), and it can be increased by engineering the non-conjugated groups, i.e., alkyl chain spacers in single component DA systems and side chains in high-efficiency bulk-heterojunction systems. Increasing DA spacing allows us to realize significantly reduced [Formula: see text] and improved device voltage. This points out a new research direction for breaking the performance bottleneck of organic solar cells.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa