Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Plant Cell Rep ; 43(7): 176, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896259

RESUMO

KEY MESSAGE: Saline-alkali stress induces oxidative damage and photosynthesis inhibition in H. citrina, with a significant downregulation of the expression of photosynthesis- and antioxidant-related genes at high concentration. Soil salinization is a severe abiotic stress that impacts the growth and development of plants. In this study, Hemerocallis citrina Baroni was used to investigate its responsive mechanism to complex saline-alkali stress (NaCl:Na2SO4:NaHCO3:Na2CO3 = 1:9:9:1) for the first time. The growth phenotype, photoprotective mechanism, and antioxidant system of H. citrina were studied combining physiological and transcriptomic techniques. KEGG enrichment and GO analyses revealed significant enrichments of genes related to photosynthesis, chlorophyll degradation and antioxidant enzyme activities, respectively. Moreover, weighted gene co-expression network analysis (WGCNA) found that saline-alkali stress remarkably affected the photosynthetic characteristics and antioxidant system. A total of 29 key genes related to photosynthesis and 29 key genes related to antioxidant enzymes were discovered. High-concentration (250 mmol L-1) stress notably inhibited the expression levels of genes related to light-harvesting complex proteins, photosystem reaction center activity, electron transfer, chlorophyll synthesis, and Calvin cycle in H. citrina leaves. However, most of them were insignificantly changed under low-concentration (100 mmol L-1) stress. In addition, H. citrina leaves under saline-alkali stress exhibited yellow-brown necrotic spots, increased cell membrane permeability and accumulation of reactive oxygen species (ROS) as well as osmolytes. Under 100 mmol L-1 stress, ROS was eliminate by enhancing the activities of antioxidant enzymes. Nevertheless, 250 mmol L-1 stress down-regulated the expression levels of genes encoding antioxidant enzymes, and key enzymes in ascorbate-glutathione (AsA-GSH) cycle as well as thioredoxin-peroxiredoxin (Trx-Prx) pathway, thus inhibiting the activities of these enzymes. In conclusion, 250 mmol L-1 saline-alkali stress caused severe damage to H. citrina mainly by inhibiting photosynthesis and ROS scavenging capacity.


Assuntos
Antioxidantes , Regulação da Expressão Gênica de Plantas , Fotossíntese , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos dos fármacos , Clorofila/metabolismo , Álcalis , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Estresse Salino , Estresse Oxidativo/efeitos dos fármacos
2.
Plant Cell Rep ; 43(6): 146, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38764051

RESUMO

KEY MESSAGE: Compared with NaCl, NaHCO3 caused more serious oxidative damage and photosynthesis inhibition in safflower by down-regulating the expression of related genes. Salt-alkali stress is one of the important factors that limit plant growth. NaCl and sodium bicarbonate (NaHCO3) are neutral and alkaline salts, respectively. This study investigated the physiological characteristics and molecular responses of safflower (Carthamus tinctorius L.) leaves treated with 200 mmol L-1 of NaCl or NaHCO3. The plants treated with NaCl treatment were less effective at inhibiting the growth of safflower, but increased the content of malondialdehyde (MDA) in leaves. Meanwhile, safflower alleviated stress damage by increasing proline (Pro), soluble protein (SP), and soluble sugar (SS). Both fresh weight and dry weight of safflower was severely decreased when it was subjected to NaHCO3 stress, and there was a significant increase in the permeability of cell membranes and the contents of osmotic regulatory substances. An enrichment analysis of the differentially expressed genes (DEGs) using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes identified significant enrichment of photosynthesis and pathways related to oxidative stress. Furthermore, a weighted gene co-expression network analysis (WGCNA) showed that the darkgreen module had the highest correlation with photosynthesis and oxidative stress traits. Large numbers of transcription factors, primarily from the MYB, GRAS, WRKY, and C2H2 families, were predicted from the genes within the darkgreen module. An analysis of physiological indicators and DEGs, it was found that under saline-alkali stress, genes related to chlorophyll synthesis enzymes were downregulated, while those related to degradation were upregulated, resulting in inhibited chlorophyll biosynthesis and decreased chlorophyll content. Additionally, NaCl and NaHCO3 stress downregulated the expression of genes related to the Calvin cycle, photosynthetic antenna proteins, and the activity of photosynthetic reaction centers to varying degrees, hindering the photosynthetic electron transfer process, suppressing photosynthesis, with NaHCO3 stress causing more pronounced adverse effects. In terms of oxidative stress, the level of reactive oxygen species (ROS) did not change significantly under the NaCl treatment, but the contents of hydrogen peroxide and the rate of production of superoxide anions increased significantly under NaHCO3 stress. In addition, treatment with NaCl upregulated the levels of expression of the key genes for superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), the ascorbate-glutathione cycle, and the thioredoxin-peroxiredoxin pathway, and increased the activity of these enzymes, thus, reducing oxidative damage. Similarly, NaHCO3 stress increased the activities of SOD, CAT, and POD and the content of ascorbic acid and initiated the glutathione-S-transferase pathway to remove excess ROS but suppressed the regeneration of glutathione and the activity of peroxiredoxin. Overall, both neutral and alkaline salts inhibited the photosynthetic process of safflower, although alkaline salt caused a higher level of stress than neutral salt. Safflower alleviated the oxidative damage induced by stress by regulating its antioxidant system.


Assuntos
Antioxidantes , Carthamus tinctorius , Regulação da Expressão Gênica de Plantas , Estresse Oxidativo , Fotossíntese , Folhas de Planta , Bicarbonato de Sódio , Cloreto de Sódio , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Bicarbonato de Sódio/farmacologia , Cloreto de Sódio/farmacologia , Antioxidantes/metabolismo , Carthamus tinctorius/efeitos dos fármacos , Carthamus tinctorius/genética , Carthamus tinctorius/metabolismo , Carthamus tinctorius/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Malondialdeído/metabolismo , Clorofila/metabolismo , Estresse Salino/efeitos dos fármacos
3.
BMC Geriatr ; 21(1): 708, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911483

RESUMO

OBJECTIVE: We conducted a systematic review and meta-analysis to clarify the effects of different exercise modes (resistance training [RT], whole body vibration training [WBVT], and mixed training [MT, resistance training combined with other exercises such as balance, endurance and aerobic training]) on muscle strength (knee extension strength [KES]) and physical performance (Timed Up and Go [TUG], gait speed [GS] and the Chair Stand [CS]) in older people with sarcopenia. METHOD: All studies published from January 2010 to March 2021 on the effects of exercise training in older people with sarcopenia were retrieved from 6 electronic databases: Pubmed, Cochrane Library, Embase, Web of Science, the China National Knowledge Infrastructure (CNKI), and Wanfang Database. Two researchers independently extracted and evaluated studies that met inclusion and exclusion criteria. Pooled analyses for pre- and post- outcome measurements were performed using Review Manager 5.4 with standardized mean differences (SMDs) and fixed-effect models. RESULT: Twenty-six studies (25 randomized controlled trails [RCTs] and one non-randomized controlled trail) were included in this study with 1191 older people with sarcopenia (mean age 60.6 ± 2.3 to 89.5 ± 4.4). Compared with a control group, RT and MT significantly improved KES (RT, SMD = 1.36, 95% confidence intervals [95% CI]: 0.71 to 2.02, p < 0.0001, I2 = 72%; MT, SMD = 0.62, 95% CI: 0.29 to 0.95, p = 0.0002, I2 = 56%) and GS (RT, SMD = 2.01, 95% CI: 1.04 to 2.97, p < 0.0001, I2 = 84%; MT, SMD = 0.69, 95% CI: 0.29 to 1.09, p = 0.008, I2 = 81%). WBVT showed no changes in KES (SMD = 0.65, 95% CI: - 0.02 to 1.31, p = 0.06, I2 = 80%) or GS (SMD = 0.12, 95% CI: - 0.15 to 0.39, p = 0.38, I2 = 0%). TUG times were significantly improved with all exercise training modes (SMD = -0.66, 95% CI: - 0.94 to - 0.38, p < 0.00001, I2 = 60%). There were no changes in CS times with any of the exercise training modes (SMD = 0.11, 95% CI: - 0.36 to 0.57, p = 0.65, I2 = 87%). CONCLUSIONS: In older people with sarcopenia, KES and GS can be improved by RT and MT, but not by WBVT. All three training modes improved TUG times, but not improved CS times.


Assuntos
Treinamento Resistido , Sarcopenia , Idoso , Exercício Físico , Humanos , Força Muscular , Desempenho Físico Funcional , Ensaios Clínicos Controlados Aleatórios como Assunto , Sarcopenia/diagnóstico , Sarcopenia/epidemiologia , Sarcopenia/terapia
4.
Neural Plast ; 2021: 6552246, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804154

RESUMO

The objective of this study was to systematically review the literature on the effects of cognitive behavioral therapy (CBT) on insomnia and pain in patients with traumatic brain injury (TBI). PubMed, Embase, the Cochrane Library, Cumulative Index to Nursing and Allied Health, and Web of Science databases were searched. Outcomes, including pain, sleep quality, and adverse events, were investigated. Differences were expressed using mean differences (MDs) with 95% confidence intervals (CIs). The statistical analysis was performed using STATA 16.0. Twelve trials with 476 TBI patients were included. The included studies did not indicate a positive effect of CBT on pain. Significant improvements were shown for self-reported sleep quality, reported with the Pittsburgh Self-Reported Sleep Quality Index (MD, -2.30; 95% CI, -3.45 to -1.15; P < 0.001) and Insomnia Severity Index (MD, -5.12; 95% CI, -9.69 to -0.55; P = 0.028). No major adverse events related to CBT were reported. The underpowered evidence suggested that CBT is effective in the management of sleep quality and pain in TBI adults. Future studies with larger samples are recommended to determine significance. This trial is registered with PROSPERO registration number CRD42019147266.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Terapia Cognitivo-Comportamental/métodos , Manejo da Dor/métodos , Transtornos do Sono-Vigília/terapia , Adulto , Lesões Encefálicas Traumáticas/fisiopatologia , Lesões Encefálicas Traumáticas/psicologia , Terapia Cognitivo-Comportamental/tendências , Humanos , Dor/fisiopatologia , Dor/psicologia , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Transtornos do Sono-Vigília/fisiopatologia , Transtornos do Sono-Vigília/psicologia , Resultado do Tratamento
5.
Biosci Biotechnol Biochem ; 84(1): 43-52, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31495297

RESUMO

To date, studies on the application of loop-mediated isothermal amplification (LAMP) in the detection of genetically modified organisms (GMOs) are stably increasing and demonstrates LAMP is a potential and promising method for on spot identification of GMOs. However, little information is known for detection of GM potato events by LAMP. In this report, we developed an optimized and visual LAMP assay with high specificity and sensitivity to rapidly amplify genomic DNA of potato EH92-527-1 within 45 min. The limit of detection of LAMP in our study is 10-fold higher than the conventional PCR. Furthermore, LAMP products can be directly observed via naked eyes by addition of SYBR Green I without gel electrophoresis analysis and PCR-based equipment. Therefore, the LAMP assay developed in this paper provides an efficient, convenient and cost-effective tool for the detection of GM potato EH92-527-1.


Assuntos
DNA de Plantas/genética , Plantas Geneticamente Modificadas/genética , Reação em Cadeia da Polimerase/instrumentação , Reação em Cadeia da Polimerase/métodos , Solanum tuberosum/genética , Sequência de Bases/genética , Benzotiazóis , Percepção de Cores , Primers do DNA/genética , Enzimas de Restrição do DNA/genética , Diaminas , Eletroforese em Gel de Ágar , Corantes Fluorescentes/química , Contaminação de Alimentos/análise , Amplificação de Genes , Limite de Detecção , Compostos Orgânicos/química , Reação em Cadeia da Polimerase/economia , Quinolinas , Sensibilidade e Especificidade , Temperatura , Tempo
6.
Polymers (Basel) ; 15(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37571127

RESUMO

Properties of reinforcement fabrics, such as permeability, are typically characterized in a volume-averaging sense, whereas the fabric microstructure may vary spatially. This makes designing an effective resin infusion strategy for defect-free composite fabrication challenging. Our work presents a concurrent method for simultaneously measuring the local and global in-plane permeability and offers a handy technique for evaluating spatial variability. This experimental setup was similar to that of unidirectional in-plane permeability tests. The fabric, however, should be cut and tested along the angle bisector of warp and weft directions. The evolution of resin flow fronts was analyzed in real-time using in-house code through live video monitoring. The local and global in-plane permeability components were then obtained by applying Darcy's law regionally and globally. The results are in good agreement with those obtained by radial permeability experiments. Statistical analysis of local permeability reveals that the microstructure variability follows a normal distribution. A complete description of fabric microstructure provided by X-ray microcomputed tomography suggests that local permeability and microstructure variation are closely related, confirming the efficacy of the newly proposed method. This work enables the estimation of fabric structure variability and local and global in-plane permeability in a single test without resorting to expensive volume imaging techniques.

7.
Artigo em Inglês | MEDLINE | ID: mdl-36901394

RESUMO

Lignin is an ideal carbon source material, and lignin-based carbon materials have been widely used in electrochemical energy storage, catalysis, and other fields. To investigate the effects of different lignin sources on the performance of electrocatalytic oxygen reduction, different lignin-based nitrogen-doped porous carbon catalysts were prepared using enzymolytic lignin (EL), alkaline lignin (AL) and dealkaline lignin (DL) as carbon sources and melamine as a nitrogen source. The surface functional groups and thermal degradation properties of the three lignin samples were characterized, and the specific surface area, pore distribution, crystal structure, defect degree, N content, and configuration of the prepared carbon-based catalysts were also analyzed. The electrocatalytic results showed that the electrocatalytic oxygen reduction performance of the three lignin-based carbon catalysts was different, and the catalytic performance of N-DLC was poor, while the electrocatalytic performance of N-ELC was similar to that of N-ALC, both of which were excellent. The half-wave potential (E1/2) of N-ELC was 0.82 V, reaching more than 95% of the catalytic performance of commercial Pt/C (E1/2 = 0.86 V) and proving that EL can be used as an excellent carbon-based electrocatalyst material, similar to AL.


Assuntos
Carbono , Técnicas Eletroquímicas , Lignina , Nitrogênio , Humanos , Hipóxia , Nitrogênio/química , Oxigênio , Porosidade
8.
Materials (Basel) ; 16(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38138756

RESUMO

Currently, the development of nonmetallic oxygen reduction reaction (ORR) catalysts based on heteroatomic-doped carbon materials is receiving increaseing attention in the field of fuel cells. Here, we used enzymolytic lignin (EL), melamine, and thiourea as carbon, nitrogen, and sulfur sources and NH4Cl as an activator to prepare N- and S-codoped lignin-based polyporous carbon (ELC) by one-step pyrolysis. The prepared lignin-derived biocarbon material (ELC-1-900) possessed a high specific surface area (844 m2 g-1), abundant mesoporous structure, and a large pore volume (0.587 cm3 g-1). The XPS results showed that ELC-1-900 was successfully doped with N and S. ELC-1-900 exhibited extremely high activity and stability in alkaline media for the ORR, with a half-wave potential (E1/2 = 0.88 V) and starting potential (Eonset = 0.98 V) superior to those of Pt/C catalysts and most non-noble-metal catalysts reported in recent studies. In addition, ELC-1-900 showed better ORR stability and methanol tolerance in alkaline media than commercial Pt/C catalysts.

9.
Food Chem ; 421: 136201, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37105117

RESUMO

Natural essential oils (EOs), especially those combining different individual EOs (also termed composite EOs) with enhanced performance, are becoming healthy, market-sought food preservatives/additives. This study aims to provide insights into the challenge regarding EOs processing due to their low solubility and the elusive mechanism under the enhanced bio-reactivity of composite EOs. A unique oil/water interacting network was created by phase-inversion processing, which enhances EO solubilization and emulsification to form composite EO formulations (EOFs) containing ordinary cinnamon, oregano and clove EOs. These EOFs mainly contained cinnamaldehyde, carvacrol and eugenol and exhibited excellent post-storage stability. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ability of EOFs (at 15.880 µL/mL) was > 88%, and the Ferric reducing antioxidant power (FRAP) was 1.8 mM FeSO4·7H2O. The minimum inhibitory concentration (MIC) of EOFs against E. coli and S. aureus was ∼7.940 µL/mL. The EOFs could cause quick deterioration of bacterial structures, demonstrating high efficacy in bacteria-killing and anti-biofilm formation.


Assuntos
Óleos Voláteis , Origanum , Syzygium , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Origanum/química , Cinnamomum zeylanicum/química , Staphylococcus aureus , Emulsões , Escherichia coli , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
10.
Mol Nutr Food Res ; 66(13): e2200106, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35481618

RESUMO

The role of intestinal factors in the pathogenesis of diabetes, such as a decrease in the incretin effect, has recently attracted considerable attention. An imbalance in the gut microbiota inhibits the secretion of incretins, which are metabolic hormones can reduce blood glucose levels, and promotes the occurrence and development of diabetes. Numerous studies have demonstrated that foods are environmental factors that are important in the modulation of gut microbial-mediated glucose metabolism. In general, functional foods trigger the gut microbiota to produce beneficial metabolites or reduce harmful products through metabolic pathways and then regulate glucose and lipid metabolism. Recent studies have shown that similar to functional foods, the regulatory effects of some herbs and Western medicines are closely related to alterations in the gut microbiota. In this review, the intestinal mechanism of foods, herbs, and Western medicine in affecting the process of glucose metabolism is summarized.


Assuntos
Diabetes Mellitus , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Diabetes Mellitus/tratamento farmacológico , Alimentos , Glucose/farmacologia , Humanos
11.
Comput Math Methods Med ; 2022: 2807354, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35529265

RESUMO

Background: Long noncoding RNAs (lncRNAs) are becoming a critical class of metabolic regulate molecule in cancer. Glutamine is a regulator that contributes to each of the core metabolic tasks in proliferating tumor cells. Thus, we aimed to evaluate the association of lncRNAs with glutamine metabolism in lung adenocarcinoma (LUAD). Methods: Using single-sample gene set enrichment analysis (ssGSEA), LUAD specimens were assigned scores based on glutamine metabolism-related genes, and the shared common glutamine metabolism-related lncRNAs in three different LUAD data cohorts were identified. ConsensusClusterPlus was used to perform unsupervised clustering analysis in patients with LUAD. Key glutamine metabolism-related lncRNAs were identified by first-order partial correlation analysis. Results: A total of 11 shared glutamine metabolism-associated lncRNAs were identified in three LUAD data cohorts, and LUAD patients were classified into three glutamine metabolism subtypes based on the expressions of the related genes. C1 exhibited shorter overall survival (OS), poor genomic instability, and inadequate infiltration of immune cell types in the tumor microenvironment (TME) and was representative of the immunodeficiency phenotype. C2 represented the immunosuppressive phenotype while C3 represented the immune activation phenotype, exhibiting the highest sensitivity to immunotherapy. Nine of the 11 lncRNAs were localized to the nucleus. Finally, three key lncRNAs, significantly enriched in multiple metabolic pathways, were screened and found to be remarkably related to the OS of LUAD. Conclusion: We identified three glutamine metabolism subtypes of LUAD, which reflected different OS, genomic, and TME features, and identified three key glutamine metabolism-associated lncRNAs may contribute to further study of lncRNAs in cancer metabolism.


Assuntos
Neoplasias Pulmonares , RNA Longo não Codificante , Glutamina/genética , Humanos , Neoplasias Pulmonares/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Microambiente Tumoral/genética
12.
Front Endocrinol (Lausanne) ; 13: 999715, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36303868

RESUMO

Objective: Excessive carbohydrate intake is a high risk factor for increased morbidity of type 2 diabetes (T2D). A novel regimen for the dietary care of diabetes that consists of a highly active α-amylase inhibitor derived from white common bean extract (WCBE) and sufficient carbohydrates intake was applied to attenuate T2D and its complications. Furthermore, the role of gut microbiota in this remission was also investigated. Methods: We conducted a 4-month randomized double-blinded placebo-controlled trial. During the intense intervention period, ninety subjects were randomly assigned to the control group (Group C) and WCBE group (Group W). Subjects in Group C were supplemented with 1.5 g of maltodextrin as a placebo. Subjects in Group W took 1.5 g of WCBE half an hour before a meal. Fifty-five participants continued the maintenance intervention receiving the previous dietary intervention whereas less frequent follow-up. The variation in biochemical, vasculopathy and neuropathy indicators and the structure of the fecal microbiota during the intervention was analyzed. Result: Glucose metabolism and diabetic complications showed superior remission in Group W with a 0.721 ± 0.742% decline of glycosylated hemoglobin after 4 months. The proportion of patients with diabetic peripheral neuropathy (Toronto Clinical Scoring System, TCSS ≥ 6) was significantly lower in Group W than in Group C. Both the left and right sural sensory nerve conduction velocity (SNCV-left sural and SNCV-right sural) slightly decreased in Group C and slightly increased in Group W. Additionally, the abundances of Bifidobacterium, Faecalibacterium and Anaerostipes were higher in Group W, and the abundances of Weissella, Klebsiella, Cronobacter and Enterobacteriaceae_unclassified were lower than those in Group C at month 2. At the end of month 4, Bifidobacterium remained more abundant in Group W. Conclusion: To our knowledge, this is the first report of improvement to diabetes complications by using a dietary supplement in such a short-term period. The enrichment of SCFA-producing bacteria might be responsible for the attenuation of T2D and its complications. Clinical trial registration number: http://www.chictr.org.cn/edit.aspx?pid=23309&htm=4, identifier ChiCTR-IOR-17013656.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Microbioma Gastrointestinal , Phaseolus , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Método Duplo-Cego , Neuropatias Diabéticas/tratamento farmacológico
13.
Polymers (Basel) ; 13(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34451159

RESUMO

Conch shell bio-filler (CSBF) was prepared by washing, ultrasonicating, and pulverizing of conch shells and then was applied in waterborne intumescent fire-retardant coatings. The influence of CSBF on fire resistance and anti-ageing properties of intumescent fire-retardant coatings were studied by using different analytical methods. The fire protection and smoke density tests showed that when the mass fraction of CSBF was 3%, the resulting FRC3 coating had the optimum synergistic flame-retardant and smoke-suppression effects concomitant with a flame-spread rating of 10.7, equilibrium backside temperature of 152.4 °C at 900 s, and smoke-density rating value of 10.4%, which were attributed to the establishment of a more dense and stable intumescent char layer against heat and mass transfer. Thermogravimetric analysis indicated that the presence of CSBF increased the thermal stability and char-forming performance of the coatings, and the char residue of FRC3 rose to 34.6% at 800 °C from 28.6% of FRC0 without CSBF. The accelerated ageing test suggested that the incorporation of CSBF reduced the migration and decomposition of the flame retardants and the yellowing, blistering, and powdering phenomenon, thus improving the structural stability of the coating, resulting in better durability of flame retardancy and smoke-suppression performance.

14.
Eur Rev Aging Phys Act ; 18(1): 23, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34763651

RESUMO

OBJECTIVE: We conducted a meta-analysis to analyze the effects of resistance training on measures of body composition, muscle strength, and muscle performance in older people with sarcopenia. METHODS: All randomized controlled trials on the effects of resistance training on outcome variables in older people with sarcopenia were searched on Pubmed, Embase, Cochrane Library, the China National Knowledge Infrastructure (CNKI), and Wanfang. Data from January 2010 to October 2020 were reviewed. Two researchers extracted data and evaluated the quality of the studies that met the inclusion criteria independently. Meta-analysis for pre-post changes were calculated as standardized mean difference (SMD) with 95% confidence intervals (CI). RESULTS: Fourteen studies meeting inclusion criteria included 561 healthy older adults (age 65.8 to 82.8) with sarcopenia. Compared with the control group, resistance training had positive effects on body fat mass (SMD = -0.53, 95% CI - 0.81 to - 0.25, p = 0.0002, I2 = 0%), handgrip strength (SMD = 0.81, 95%CI 0.35 to 1.27, p = 0.0005, I2 = 81%), knee extension strength (SMD = 1.26, 95% CI 0.72 to 1.80, p < 0.0001, I2 = 67%), gait speed (SMD = 1.28, 95%CI 0.36 to 2.19, p = 0.006, I2 = 89%), and the timed up and go test (SMD = -0.93, 95% CI - 1.30 to - 0.56, p < 0.0001, I2 = 23%). Resistance training had no effects on appendicular skeletal muscle mass (SMD = 0.25, 95% CI - 0.27 to 0.78, p = 0.35, I2 = 68%), skeletal muscle mass (SMD = 0.27, 95% CI - 0.02 to 0.56, p = 0.07, I2 = 0%) and leg lean mass (SMD = 0.12, 95% CI - 0.25 to 0.50, p = 0.52, I2 = 0%). Old people with sarcopenia of different ages, genders or diagnostic criteria and weights have different gains in muscle mass, handgrip strength, knee extension strength and muscle performance after different intervention duration, frequencies, mode and intensity resistance training. CONCLUSION: Resistance training is an effective treatment to improve body fat mass, muscle strength, and muscle performance in healthy older people with sarcopenia.

15.
Open Forum Infect Dis ; 7(7): ofaa250, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32661499

RESUMO

BACKGROUND: Various types of pulmonary diseases are associated with iron deficiency. However, information on iron status in coronavirus disease 2019 (COVID-19) is scarce. METHODS: This study included 50 hospitalized patients with confirmed COVID-19. The role of serum iron in predicting severity and mortality of COVID-19 was evaluated. RESULTS: The most common symptoms of COVID-19 patients in this study were cough (82%), fever (64%), and chest distress (42%). Of the 50 patients, 45 (90%) patients had abnormally low serum iron levels (<7.8 µmol/L). The severity of COVID-19 was negatively correlated with serum iron levels before and after treatment and was positively correlated with C-reactive protein, serum amyloid A, D-dimer, lactate dehydrogenase, urea nitrogen, and myoglobin levels. Decreased serum iron level could predict the transition of COVID-19 from mild to severe and critical illness. Seven (53.8%) patients with a lower serum iron level after treatment in the critical group had died. There was a significant difference in posttreatment serum iron levels between COVID-19 survivors and nonsurvivors. CONCLUSIONS: Serum iron deficiency was detected in the patients with COVID-19. The severity and mortality of the disease was closely correlated with serum iron levels. Low serum iron concentration was an independent risk factor for death in COVID-19 patients.

16.
Chemosphere ; 241: 125027, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31606002

RESUMO

The aim of this study was to investigate whether the plant-growth-promoting rhizobacteria (PGPR) could enhance phytoremediation efficiency of Scirpus triqueter (S.triqueter) in the pyrene-Ni co-contaminated soil. We also expected to reveal the possible mechanism for the affected phytoremediation efficiency induced by PGPR. We used three kinds of contaminated soils (Ni-contaminated soil, pyrene-contaminated soil and pyrene-Ni co-contaminated soil) to conduct this pot study. After harvest, plants growth indicators, polyphenol oxidase (PPO) activity and soil microbial community structure of each treatment were investigated to explain the different dissipation rates of pyrene and removal rates of Ni between treatments with and without PGPR. The results showed that PGPR-inoculated S. triqueter increased dissipation rates of pyrene and removal rates of Ni in all three contaminated soils, among which Ni removal rates in Ni single contaminated soil was elevated most significantly, from 0.895‰ to 8.8‰, increasing nearly 9 folds. However, Ni removal rate efficiency in co-contaminated soil was weakened because more toxic and complicated co-contaminated soil restrained plant growth and Ni absorption. We also observed that co-contamination harmed the soil microbial community more severely than that in single pyrene or Ni contaminated soil through phospholipid fatty acids analysis. Furthermore, dissipation rates of pyrene and removal rates of Ni were found positively correlated to the PPO activity and the abundance of branched and saturated fatty acids reflected by Pearson correlation analysis.


Assuntos
Biodegradação Ambiental , Cyperaceae/efeitos dos fármacos , Pirenos , Rhizobiaceae/metabolismo , Poluentes do Solo/química , Cyperaceae/crescimento & desenvolvimento , Cinética , Microbiota/efeitos dos fármacos , Níquel/toxicidade , Desenvolvimento Vegetal/efeitos dos fármacos , Pirenos/análise , Pirenos/toxicidade , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa