Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Opt Express ; 30(22): 39679-39690, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36298914

RESUMO

A novel integrated surface plasmon resonance (SPR) sensor that combines an optical waveguide platform and an ultra-thin spectrometer is proposed. The core of the proposed method is a special-shaped optical waveguide structure that employs a wedge-shaped incident surface, which changes the position of the total reflection of the incident light on the sagittal plane without affecting the direction of propagation on the tangential plane. The parameters of the sensing module with the integrated SPR sensor and spectrometer module were designed and optimized to achieve higher performance in a compact optical waveguide platform. An experimental system was built based on the theoretical model, and the spectral sensitivity of the system was analyzed before sample detection, and the results showed that the spectral resolution in the working range could reach 9.9 nm. The refractive index sensitivity of this novel SPR sensor was 3186 nm/RIU with good stability by detecting different concentrations of sodium chloride samples. This new structure does not require an external spectrometer, thereby enabling an increase in the compactness of the SPR sensing system. The proposed method can provide a novel idea for the miniaturization of SPR sensors.

2.
Biol Pharm Bull ; 43(2): 334-339, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31735734

RESUMO

Benzoylaconitine (BAC), the main hydrolysate of aconitine, is a lower toxic monoester type alkaloid considered as the pharmacodynamic constituent in Aconitum species. In this study, the effects and mechanisms of BAC on production of inflammatory cytokines interleukin (IL)-6 and IL-8 were investigated in IL-1ß-stimulated human synovial SW982 cells. The SW982 cells were incubated with BAC (0, 5 and 10 µM) before stimulating with IL-1ß (10 ng/mL). The results revealed that BAC suppressed gene and protein expression of IL-6 and IL-8 induced by IL-1ß. BAC decreased activation of mitogen-activated protein kinase (MAPK) and phosphorylation of Akt. BAC also inhibited degradation of inhibitor of kappaB (IκB)-α, phosphorylation and nuclear transposition of p65 protein. The results demonstrate that BAC exerts an anti-inflammatory effect dependent on MAPK, Akt and nuclear factor-κB (NF-κB) pathways in human synovial cells stimulated with IL-1ß, suggesting that BAC may be exploited as a potential therapeutic agent for rheumatoid arthritis (RA) treatment.


Assuntos
Aconitina/análogos & derivados , Interleucina-1beta , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Aconitina/química , Aconitina/farmacologia , Artrite Reumatoide/metabolismo , Linhagem Celular , Sobrevivência Celular , Humanos , Interleucina-1beta/metabolismo , Fosforilação , Sarcoma Sinovial , Transdução de Sinais , eIF-2 Quinase/metabolismo
3.
Acta Pharmacol Sin ; 40(9): 1138-1156, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30814658

RESUMO

Serotonin (5-HT) receptors are proteins involved in various neurological and biological processes, such as aggression, anxiety, appetite, cognition, learning, memory, mood, sleep, and thermoregulation. They are commonly associated with drug abuse and addiction due to their importance as targets for various pharmaceutical and recreational drugs. However, due to a high sequence similarity/identity among 5-HT receptors and the unavailability of the 3D structure of the different 5-HT receptor, no report was available so far regarding the systematical comparison of the key and selective residues involved in the binding pocket, making it difficult to design subtype-selective serotonergic drugs. In this work, we first built and validated three-dimensional models for all 5-HT receptors based on the existing crystal structures of 5-HT1B, 5-HT2B, and 5-HT2C. Then, we performed molecular docking studies between 5-HT receptors agonists/inhibitors and our 3D models. The results from docking were consistent with the known binding affinities of each model. Sequentially, we compared the binding pose and selective residues among 5-HT receptors. Our results showed that the affinity variation could be potentially attributed to the selective residues located in the binding pockets. Moreover, we performed MD simulations for 12 5-HT receptors complexed with ligands; the results were consistent with our docking results and the reported data. Finally, we carried out off-target prediction and blood-brain barrier (BBB) prediction for Captagon using our established hallucinogen-related chemogenomics knowledgebase and in-house computational tools, with the hope to provide more information regarding the use of Captagon. We showed that 5-HT2C, 5-HT5A, and 5-HT7 were the most promising targets for Captagon before metabolism. Overall, our findings can provide insights into future drug discovery and design of medications with high specificity to the individual 5-HT receptor to decrease the risk of addiction and prevent drug abuse.


Assuntos
Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/metabolismo , Agonistas do Receptor de Serotonina/metabolismo , Sítios de Ligação , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Farmacologia/métodos , Receptores de Serotonina/química , Antagonistas da Serotonina/química , Agonistas do Receptor de Serotonina/química
4.
Acta Pharmacol Sin ; 39(2): 205-212, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28933424

RESUMO

Dual antiplatelet therapy (DAT) with aspirin and clopidogrel is the standard regimen to achieve rapid platelet inhibition and prevent thrombotic events. Currently, little information is available regarding alternative antiplatelet therapy in patients with an allergy or intolerance to aspirin. Although cilostazol is already a common alternative to aspirin in clinical practice in China, its efficacy and safety remain to be determined. We retrospectively analyzed 613 Chinese patients who had undergone primary percutaneous coronary intervention (PCI). Among them, 405 patients received standard DAT (aspirin plus clopidogrel) and 205 patients were identified with intolerance to aspirin and received alternative DAT (cilostazol plus clopidogrel). There were no significant differences between the two groups in their baseline clinical characteristics. The main outcomes of the study included major adverse cardiac events (MACEs) and bleeding events during 12 months of follow-up. The MACEs endpoint was reached in 10 of 205 patients treated with cilostazol (4.9%) and in 34 of 408 patients treated with aspirin (8.3%). No statistically significant difference was observed in MACEs between the two groups. However, patients in the cilostazol group had less restenosis than did patients in the aspirin group (1.5% vs 4.9%, P=0.035). The occurrence of bleeding events tended to be lower in the cilostazol group (0.49% vs 2.7%, P=0.063). These clinical observations were further analyzed using network system pharmacology analysis, and the outcomes were consistent with clinical observations and preclinical data reports. We conclude that in Chinese patients with aspirin intolerance undergoing coronary stent implantation, the combination of clopidogrel with cilostazol may be an efficacious and safe alternative to the standard DAT regimen.


Assuntos
Aspirina/efeitos adversos , Stents Farmacológicos , Intervenção Coronária Percutânea , Inibidores da Agregação Plaquetária/uso terapêutico , Tetrazóis/uso terapêutico , Ticlopidina/análogos & derivados , Idoso , Povo Asiático , China , Cilostazol , Clopidogrel , Reestenose Coronária/prevenção & controle , Interpretação Estatística de Dados , Combinação de Medicamentos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular , Inibidores da Agregação Plaquetária/administração & dosagem , Estudos Retrospectivos , Tetrazóis/administração & dosagem , Ticlopidina/administração & dosagem , Ticlopidina/uso terapêutico
5.
Tumour Biol ; 39(5): 1010428317697562, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28459209

RESUMO

Nowadays, although chemotherapy is an established therapy for breast cancer, the molecular mechanisms of chemotherapy resistance in breast cancer remain poorly understood. This study aims to explore the effects of endoplasmic reticulum stress on autophagy, apoptosis, and chemotherapy resistance in human breast cancer cells by regulating PI3K/AKT/mTOR signaling pathway. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to detect the cell viability of six human breast cancer cell lines (MCF-7, ZR-75-30, T47D, MDA-MB-435s, MDA-MB-453, and MDA-MB-231) treated with tunicamycin (5 µM), after which MCF-7 cells were selected for further experiment. Then, MCF-7 cells were divided into the control (without any treatment), tunicamycin (8 µ), BEZ235 (5 µ), and tunicamycin + BEZ235 groups. Cell viability of each group was testified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Western blotting was applied to determine the expressions of endoplasmic reticulum stress and PI3K/AKT/mTOR pathway-related proteins and autophagy- and apoptosis-related proteins. Monodansylcadaverine and Annexin V-fluorescein isothiocyanate/propidium iodide staining were used for determination of cell autophagy and apoptosis. Furthermore, MCF-7 cells were divided into the control (without any treatment), tunicamycin (5 µM), cisplatin (16 µM), cisplatin (16 µM) + BEZ235 (5 µM), tunicamycin (5 µM) + cisplatin (16 µM), and tunicamycin (5 µM) + cisplatin (16 µM) + BEZ235 groups. Cell viability and apoptosis were also evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and Annexin V-fluorescein isothiocyanate/propidium iodide staining. In MCF-7 cells treated with tunicamycin, cell viability decreased significantly, but PEAK, eIF2, and CHOP were upregulated markedly and p-PI3K, p-AKT, and p-MTOR were downregulated in dose- and time-dependent manners. In the tunicamycin + BEZ235 group, the cell viability was lower and the apoptosis rate was higher than those of the control and monotherapy groups. Compared with the cisplatin group, the tunicamycin + cisplatin group showed a relatively higher growth inhibition rate; the growth inhibition rate substantially increased in the tunicamycin + cisplatin + BEZ235 group than the tunicamycin + cisplatin group. The apoptosis rate was highest in tunicamycin + cisplatin + BEZ235 group, followed by tunicamycin + cisplatin group and then cisplatin group. Our study provide evidence that endoplasmic reticulum stress activated by tunicamycin could promote breast cancer cell autophagy and apoptosis and enhance chemosensitivity of MCF-7 cells by inhibiting the PI3K/AKT/mTOR signaling pathway.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Cisplatino/administração & dosagem , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/administração & dosagem , Células MCF-7 , Proteína Oncogênica v-akt/genética , Fosfatidilinositol 3-Quinases/genética , Quinolinas/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética , Tunicamicina/administração & dosagem
6.
Mol Cell Biochem ; 435(1-2): 175-183, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28536952

RESUMO

The neural cell adhesion molecule (NCAM), a key member of the immunoglobulin-like CAM family, was reported to regulate the migration of bone marrow-derived mesenchymal stem cells (BMSCs). However, the detailed cellular behaviors including lamellipodia formation in the initial step of directional migration remain largely unknown. In the present study, we reported that NCAM affects the lamellipodia formation of BMSCs. Using BMSCs from Ncam knockout mice we found that Ncam deficiency significantly impaired the migration and the directional lamellipodia formation of BMSCs. Further studies revealed that Ncam knockout decreased the activity of cofilin, an actin-cleaving protein, which was involved in directional protrusions. To explore the molecular mechanisms involved, we examined protein tyrosine phosphorylation levels in Ncam knockout BMSCs by phosphotyrosine peptide array analyses, and found that the tyrosine phosphorylation level of ß1 integrin, a protein upstream of cofilin, was greatly upregulated in Ncam-deficient BMSCs. Notably, by blocking the function of ß1 integrin with RGD peptide or ROCK inhibitor, the cofilin activity and directional lamellipodia formation of Ncam knockout BMSCs could be rescued. Finally, we found that the effect of NCAM on tyrosine phosphorylation of ß1 integrin was independent of the fibroblast growth factor receptor. These results indicated that NCAM regulates directional lamellipodia formation of BMSCs through ß1 integrin signal-mediated cofilin activity.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Células da Medula Óssea/metabolismo , Movimento Celular , Integrina beta1/metabolismo , Células-Tronco Mesenquimais/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Fatores de Despolimerização de Actina/genética , Animais , Células da Medula Óssea/citologia , Células Cultivadas , Integrina beta1/genética , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Knockout , Moléculas de Adesão de Célula Nervosa/genética , Pseudópodes/genética , Pseudópodes/metabolismo
7.
Yao Xue Xue Bao ; 51(11): 1711-6, 2016 11.
Artigo em Chinês | MEDLINE | ID: mdl-29908114

RESUMO

To study the role of oleanolic acid on interleukin (IL)-1ß-stimulated expression of inflammatory cytokines, and to explore its anti-inflammatory mechanism in SW982 cells, the toxicity of oleanolic acid on SW982 cells was detected by MTT; effects of different concentrations of oleanolic acid(5, 10, 20 µmol·L(-1)) on the expression of inflammatory factors IL-6, IL-8 and matrix metalloproteinase-1 (MMP-1) was tested at protein and m RNA levels. The study was performed in IL-1ß-stimulated SW982 cells together with enzyme-linked immunosorbent assay (ELISA) and real-time fluorescence quantitative PCR (real-time PCR) methods; the influence of oleanolic acid on the phosphorylation of mitogen-activated protein kinase (MAPK), phosphatidyl inositol-3-kinase/Akt (PI3K/Akt) and nuclear transcription factor-κB (NF-κB) signaling pathways related protein was analyzed by Western blot. Results showed that different concentrations of oleanolic acid(≤40 µmol·L(-1)) were almost non-toxicity to SW982 cells; oleanolic acid significantly inhibited the expression of inflammatory factors in a dose-dependent manner; oleanolic acid restrained extracellular signal-related kinase (ERK), p38, c-jun N-terminal kinase (JNK) and Akt protein phosphorylation and IκB-α protein degradation obviously. The inhibition effect of oleanolic acid on inflammatory factors stimulated by IL-1ß may be worked through MAPK, PI3K/Akt and NF-κB signaling pathways.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/metabolismo , Ácido Oleanólico/farmacologia , Sarcoma Sinovial/metabolismo , Linhagem Celular , Citocinas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Proteínas I-kappa B/metabolismo , Interleucina-1beta/farmacologia , Metaloproteinase 1 da Matriz/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sarcoma Sinovial/tratamento farmacológico , Transdução de Sinais , Fator de Transcrição RelA/metabolismo
8.
Mol Cell Biochem ; 402(1-2): 203-11, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25626893

RESUMO

Polyethyleneimine (PEI) is a cost-effective and non-viral vector for gene transfer, but the factors determining gene transfer efficiency and cytotoxicity of PEI in different mammalian cell lines remain largely unknown. In the present study, three different cell lines were chosen for investigation. Using pEGFP DNA and PEI, 21.5, 29.2, and 92.1 % of GFP-positive cells were obtained in BMSC, Hela, and 293T, respectively. In luciferase reporter assay, similar results were obtained (for luciferase activity, BMSC < Hela < 293T cells). By MTT test and cell apoptotic marker analysis, we demonstrated that high gene transfer efficiency is accompanied with high cytotoxicity of PEI. Moreover, we found that high expression level of caveolin-1 was accompanied with high gene transfer efficiency and cytotoxicity of PEI in 293T cells. More convincingly, caveolin-1 silencing in 293T could reduce both gene transfer efficiency and cytotoxicity of PEI. In contrast, caveolin-1 overexpression in BMSCs increases both gene transfer efficiency and cytotoxicity of PEI. Taken together, our study suggests that caveolin-1 may at least in part determine gene transfer efficiency and cytotoxicity of PEI in mammalian cell lines, providing caveolin-1 as a potential target for improving gene transfer efficiency when applying positively charged polyplexes to cell transfection.


Assuntos
Caveolina 1/fisiologia , Polietilenoimina/toxicidade , Animais , Genes Reporter , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Células HEK293 , Células HeLa , Humanos , Luciferases de Renilla/biossíntese , Luciferases de Renilla/genética , Camundongos , Transfecção
9.
Cell Signal ; 115: 111038, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38195035

RESUMO

N6-methyladenosine (m6A), the most prevalent internal modification in mRNA, is related to the pathogenesis of osteoporosis (OP). Although methyltransferase Like-3 (METTL3), an m6A transferase, has been shown to mitigate OP progression, the mechanisms of METTL3-mediated m6A modification in osteoblast function remain unclear. Here, fluid shear stress (FSS) induced osteoblast proliferation and differentiation, resulting in elevated levels of METTL3 expression and m6A modification. Through Methylated RNA Immunoprecipitation Sequencing (MeRIP-seq) and Transcriptomic RNA Sequencing (RNA-seq), SRY (Sex Determining Region Y)-box 4 (SOX4) was screened as a target of METTL3, whose m6A-modified coding sequence (CDS) regions exhibited binding affinity towards METTL3. Further functional experiments demonstrated that knockdown of METTL3 and SOX4 hampered osteogenesis, and METTL3 knockdown compromised SOX4 mRNA stability. Via RNA immunoprecipitation (RIP) assays, we further confirmed the direct interaction between METTL3 and SOX4. YTH N6-Methyladenosine RNA Binding Protein 3 (YTHDF3) was identified as the m6A reader responsible for modulating SOX4 mRNA and protein levels by affecting its degradation. Furthermore, in vivo experiments demonstrated that bone loss in an ovariectomized (OVX) mouse model was reversed through the overexpression of SOX4 mediated by adeno-associated virus serotype 2 (AAV2). In conclusion, our research demonstrates that METTL3-mediated m6A modification of SOX4 plays a crucial role in regulating osteoblast proliferation and differentiation through its recognition by YTHDF3. Our research confirms METTL3-m6A-SOX4-YTHDF3 as an essential axis and potential mechanism in OP.


Assuntos
Metiltransferases , Osteoblastos , Animais , Camundongos , Proliferação de Células , Metiltransferases/metabolismo , Osteoblastos/metabolismo , RNA , RNA Mensageiro/metabolismo
10.
Zhen Ci Yan Jiu ; 49(5): 526-533, 2024 May 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38764125

RESUMO

Lumbar intervertebral disc herniation (LDH) is a common and frequently-occurring disease, which usually causes lumbar and leg pain. Studies have shown that acupuncture can improve the symptoms of LDH patients. In the present paper, we summarize the progress of researches on the mechanisms of acupuncture underlying improvement of symptoms of LDH in recent 10 years from 1) delaying the intervertibral disc degeneration (by down-regulating the expressions of matrix metalloproteinase ï¼»MMPï¼½-3 and MMP-4, up-regulating the expressions of diosaccharides and polyglycoprotein, inhibiting apoptosis and promoting mitochondrial autophagy of nucleus pulposus cells, etc.), 2) maintaining spinal column stability (by relieving rachiasmus and improving lumbar flexor and extensor muscle strength, lowering the degree of polyfidus edema and fat infiltration, and restoring the biomechanics of the spine), 3) regulating inflammation (by inhibiting the production of proinflammatory factors and increasing the production of anti-inflammatory factors, etc.), 4) regulating immune response (by promoting the activity of T cells and other immune cells, lowering serum levels of MMP-3, transforming growth factor-ß1 and prostaglandin E2, raising serum levels of IgA, IgG and IgM to improve immune function ), 5) modulating neural structure and function (by promoting myelin regeneration of sciatic nerve fibers, and reducing the edema of Schwann cells' cytoplasm and mitochondria, and improving neural ultrastructure, and sensory and motor functions of peripheral nerves, etc.), 6) relieving lumbar pain (by down-regulating expression of Ca2+/calmodulin-dependent protein kinase and activation of lumbar spinal cord glial cells, blocking nociceptive signal conduction, regulating the levels of pain-related factors, etc.), and 7) improving local microcirculation. These results may provide scientific evidence for acupuncture treatment of LDH.


Assuntos
Terapia por Acupuntura , Deslocamento do Disco Intervertebral , Humanos , Deslocamento do Disco Intervertebral/terapia , Animais , Vértebras Lombares
11.
Orthop Surg ; 16(6): 1418-1433, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38658320

RESUMO

OBJECTIVE: Bone marrow mesenchymal stem cells (BMSCs) show significant potential for osteogenic differentiation. However, the underlying mechanisms of osteogenic capability in osteoporosis-derived BMSCs (OP-BMSCs) remain unclear. This study aims to explore the impact of YTHDF3 (YTH N6-methyladenosine RNA binding protein 3) on the osteogenic traits of OP-BMSCs and identify potential therapeutic targets to boost their bone formation ability. METHODS: We examined microarray datasets (GSE35956 and GSE35958) from the Gene Expression Omnibus (GEO) to identify potential m6A regulators in osteoporosis (OP). Employing differential, protein interaction, and machine learning analyses, we pinpointed critical hub genes linked to OP. We further probed the relationship between these genes and OP using single-cell analysis, immune infiltration assessment, and Mendelian randomization. Our in vivo and in vitro experiments validated the expression and functionality of the key hub gene. RESULTS: Differential analysis revealed seven key hub genes related to OP, with YTHDF3 as a central player, supported by protein interaction analysis and machine learning methodologies. Subsequent single-cell, immune infiltration, and Mendelian randomization studies consistently validated YTHDF3's significant link to osteoporosis. YTHDF3 levels are significantly reduced in femoral head tissue from postmenopausal osteoporosis (PMOP) patients and femoral bone tissue from PMOP mice. Additionally, silencing YTHDF3 in OP-BMSCs substantially impedes their proliferation and differentiation. CONCLUSION: YTHDF3 may be implicated in the pathogenesis of OP by regulating the proliferation and osteogenic differentiation of OP-BMSCs.


Assuntos
Biologia Computacional , Células-Tronco Mesenquimais , Osteogênese , Osteoporose Pós-Menopausa , Humanos , Osteoporose Pós-Menopausa/genética , Animais , Feminino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Biologia Computacional/métodos , Osteogênese/fisiologia , Osteogênese/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Aprendizado de Máquina , Diferenciação Celular , Adenosina/metabolismo , Adenosina/genética , Adenosina/análogos & derivados
12.
J Cell Sci ; 124(Pt 15): 2552-60, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21730021

RESUMO

Neural cell adhesion molecule (NCAM) has recently been found on adult stem cells, but its biological significance remains largely unknown. In this study, we used bone-marrow-derived mesenchymal stem cells (MSCs) from wild-type and NCAM knockout mice to investigate the role of NCAM in adipocyte differentiation. It was demonstrated that NCAM isoforms 180 and 140 but not NCAM-120 are expressed on almost all wild-type MSCs. Upon adipogenic induction, Ncam(-/-) MSCs exhibited a marked decrease in adipocyte differentiation compared with wild-type cells. The role of NCAM in adipocyte differentiation was also confirmed in NCAM-silenced preadipocyte 3T3-L1 cells, which also had a phenotype with reduced adipogenic potential. In addition, we found that Ncam(-/-) MSCs appeared to be insulin resistant, as shown by their impaired insulin signaling cascade, such as the activation of the insulin-IGF-1 receptor, PI3K-Akt and CREB pathways. The PI3K-Akt inhibitor, LY294002, completely blocked adipocyte differentiation of MSCs, unveiling that the reduced adipogenic potential of Ncam(-/-) MSCs is due to insulin resistance as a result of loss of NCAM function. Furthermore, insulin resistance of Ncam(-/-) MSCs was shown to be associated with induction of tumor necrosis factor α (TNF-α), a key mediator of insulin resistance. Finally, we demonstrated that re-expression of NCAM-180, but not NCAM-140, inhibits induction of TNF-α and thereby improves insulin resistance and adipogenic potential of Ncam(-/-) MSCs. Our results suggest a novel role of NCAM in promoting insulin signaling and adipocyte differentiation of adult stem cells. These findings raise the possibility of using NCAM intervention to improve insulin resistance.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Diferenciação Celular/fisiologia , Insulina/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Células 3T3-L1 , Animais , Western Blotting , Diferenciação Celular/genética , Linhagem Celular , Citometria de Fluxo , Imunoprecipitação , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Moléculas de Adesão de Célula Nervosa/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
13.
Exp Cell Res ; 318(17): 2257-67, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22683856

RESUMO

Mesenchymal Stromal Cells (MSCs) represent promising tools for cellular therapy owing to their multipotentiality and ability to localize to injured, inflamed sites and tumor. Various approaches to manipulate expression of MSC surface markers, including adhesion molecules and chemokine receptors, have been explored to enhance homing of MSCs. Recently, Neural Cell Adhesion Molecule (NCAM) has been found to be expressed on MSCs yet its function remains largely elusive. Herein, we show that bone marrow-derived MSCs from NCAM deficient mice exhibit defective migratory ability and significantly impaired adipogenic and osteogenic differentiation potential. We further explore the mechanism governing NCAM mediated migration of MSCs by showing the interplay between NCAM and Fibroblast Growth Factor Receptor (FGFR) induces activation of MAPK/ERK signaling, thereby the migration of MSCs. In addition, re-expression of NCAM180, but not NCAM140, could restore the defective MAPK/ERK signaling thereby the migration of NCAM deficient MSCs. Finally, we demonstrate that NCAM180 expression level could be manipulated by pro-inflammatory cytokine Tumor Necrosis Factor (TNF)-α treatment. Overall, our data reveal the vital function of NCAM in MSCs migration and differentiation thus raising the possibility of manipulating NCAM expression to enhance homing and therapeutic potential of MSCs in cellular therapy.


Assuntos
Antígeno CD56/fisiologia , Diferenciação Celular , Movimento Celular/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Western Blotting , Adesão Celular/fisiologia , Feminino , Citometria de Fluxo , Técnicas Imunoenzimáticas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteogênese , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Necrose Tumoral alfa/farmacologia
14.
Heliyon ; 9(1): e12799, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36699262

RESUMO

Background: Rheumatoid arthritis (RA) is an autoimmune disease that affects individuals of all ages. The basic pathological manifestations are synovial inflammation, pannus formation, and erosion of articular cartilage, bone destruction will eventually lead to joint deformities and loss of function. However, the specific molecular mechanisms of synovitis tissue in RA are still unclear. Therefore, this study aimed to screen and explore the potential hub genes and immune cell infiltration in RA. Methods: Three microarray datasets (GSE12021, GSE55457, and GSE55235), from the Gene Expression Omnibus (GEO) database, have been analyzed to explore the potential hub genes and immune cell infiltration in RA. First, the LIMMA package was used to screen the differentially expression genes (DEGs) after removing the batch effect. Then the clusterProfiler package was used to perform functional enrichment analyses. Second, through weighted coexpression network analysis (WGCNA), the key module was identified in the coexpression network of the gene set. Third, the protein-protein interaction (PPI) network was constructed through STRING website and the module analysis was performed using Cytoscape software. Fourth, the CIBERSORT and ssGSEA algorithm were used to analyze the immune status of RA and healthy synovial tissue, and the associations between immune cell infiltration and RA-related diagnostic biomarkers were evaluated. Fifth, we used the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) to validate the expression levels of the hub genes, and ROC curve analysis of hub genes for discriminating between RA and healthy tissue. Finally, the gene-drug interaction network was constructed using DrugCentral database, and identification of drug molecules based on hub genes using the Drug Signature Database (DSigDB) by Enrichr. Results: A total of 679 DEGs were identified, containing 270 downregulated genes and 409 upregulated genes. DEGs were primarily enriched in immune response and chemokine signaling pathways, according to functional enrichment analysis of DEGs. WGCNA explored the co-expression network of the gene set and identified key modules, the blue module was selected as the key module associated with RA. Seven hub genes are identified when PPI network and WGCNA core modules are intersected. Immune infiltration analysis using CIBERSORT and ssGSEA algorithms revealed that multiple types of immune infiltration were found to be upregulated in RA tissue compared to normal tissue. Furthermore, the levels of 7 hub genes were closely related to the relative proportions of multiple immune cells in RA. The results of the qRT-PCR demonstrated that the relative expression levels of 6 hub genes (CD27, LCK, CD2, GZMB, IL7R, and IL2RG) were up-regulated in RA synovial tissue, compared with normal tissue. Simultaneously, ROC curves indicated that the above 6 hub genes had strong biomarker potential for RA (AUC >0.8). Conclusions: Through bioinformatics analysis and qRT-PCR experiment, our study ultimately discovered 6 hub genes (CD27, LCK, CD2, GZMB, IL7R, and IL2RG) that closely related to RA. These findings may provide valuable direction for future RA clinical diagnosis, treatment, and associated research.

15.
J Biol Chem ; 286(29): 26127-37, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21628472

RESUMO

The neural cell adhesion molecule (NCAM) was recently shown to be involved in the progression of various tumors with diverse effects. We previously demonstrated that NCAM potentiates the cellular invasion and metastasis of melanoma. Here we further report that the growth of melanoma is obviously retarded when the expression of NCAM is silenced. We found that the proliferation of murine B16F0 melanoma cells, their colony formation on soft agar, and growth of transplanted melanoma in vivo are clearly inhibited by the introduction of NCAM siRNA. Interestingly, change of NCAM expression level is shown to regulate the activity of Wnt signaling molecule, ß-catenin, markedly. This novel machinery requires the function of FGF receptor and glycogen synthase kinase-3ß but is independent of the Wnt receptors, MAPK-Erk and PI3K/Akt pathways. In addition, NCAM is found to form a functional complex with ß-catenin, FGF receptor, and glycogen synthase kinase-3ß. Moreover, up-regulation of NCAM140 and NCAM180 appears more potent than NCAM120 in activation of ß-catenin, suggesting that the intracellular domain of NCAM is required for facilitating the ß-catenin signaling. Furthermore, the melanoma cells also exhibit distinct differentiation phenotypes with the NCAM silencing. Our findings reveal a novel regulatory role of NCAM in the progression of melanoma that might serve as a new therapeutic target for the treatment of melanoma.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Melanoma Experimental/patologia , Moléculas de Adesão de Célula Nervosa/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , beta Catenina/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Glicogênio Sintase Quinase 3 beta , Melanoma Experimental/genética , Camundongos , Moléculas de Adesão de Célula Nervosa/deficiência , Moléculas de Adesão de Célula Nervosa/genética , Ligação Proteica , Transdução de Sinais/genética
16.
Cytotherapy ; 14(5): 608-20, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22277011

RESUMO

BACKGROUND AIMS: The widespread NG2-expressing neural progenitors in the central nervous system (CNS) are considered to be multifunctional cells with lineage plasticity, thereby possessing the potential for treating CNS diseases. Their lineages and functional characteristics have not been completely unraveled. The present study aimed to disclose the lineage potential of clonal NG2(+) populations in vitro and in vivo. METHODS: Twenty-four clones from embryonic cerebral cortex-derived NG2(+) cells were induced for oligodendrocyte, astrocyte, neuronal and chondrocyte differentiation. The expression profiles of neural progenitor markers chondroitin sulfate proteoglycan 4 (NG2), platelet-derived growth factor-α receptor (PDGFαR); nestin and neuronal cell surface antigen (A2B5) were subsequently sorted on cells with distinct differentiation capacity. Transplantation of these NG2(+) clones into the spinal cord was used to examine their lineage potential in vivo. RESULTS: In vitro differentiation analysis revealed that all the clones could differentiate into oligodendrocytes, and seven of them were bipotent (oligodendrocytes and astrocytes). Amazingly, one clone exhibited a multipotent capacity of differentiating into not only neuronal-glial lineages but also chondrocytes. These distinct subtypes were further found to exhibit phenotypic heterogeneity based on the examination of a spectrum of neural progenitor markers. Transplanted clones survived, migrated extensively and differentiated into oligodendrocytes, astrocytes or even neurons to integrate with the host spinal cord environment. CONCLUSIONS: These results suggest that NG2(+) cells contain heterogeneous progenitors with distinct differentiation capacities, and the immortalized clonal NG2(+) cell lines might provide a cell source for treating spinal cord disorders.


Assuntos
Antígenos/metabolismo , Diferenciação Celular , Sistema Nervoso Central/citologia , Sistema Nervoso Central/crescimento & desenvolvimento , Neurônios/citologia , Proteoglicanas/metabolismo , Medula Espinal/transplante , Células-Tronco , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Linhagem da Célula , Células Cultivadas , Sistema Nervoso Central/metabolismo , Condrócitos/citologia , Condrócitos/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley , Receptor A2B de Adenosina/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Telomerase/metabolismo
17.
Mol Med Rep ; 25(3)2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35088893

RESUMO

Subsequently to the publication of this paper, while performing a careful re­examination of the scientific integrity of the data included in their publications, the authors have realized that they inadvertently used the incorrect western blotting images in Fig. 2B of this article, However, still having access to their original data, the authors were able to reassemble Fig. 2 correctly, and the corrected version of this figure is shown below. Note that this error did not significantly affect the results or the conclusions reported in this paper, and all the authors agree to this Corrigendum. The authors thank the Editor of Molecular Medicine Reports for granting them the opportunity to publish this corrigendum, and apologize to the readership for any inconvenience caused. [the original article was published on Molecular Medicine Reports 14: 1709­1713, 2016; DOI: 10.3892/mmr.2016.5411].

18.
Front Endocrinol (Lausanne) ; 12: 657953, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054729

RESUMO

Neural cell adhesion molecule (NCAM) is involved in cell multi-directional differentiation, but its role in osteoblast differentiation is still poorly understood. In the present study, we investigated whether and how NCAM regulates osteoblastic differentiation. We found that NCAM silencing inhibited osteoblast differentiation in pre-osteoblastic MC3T3-E1 cells. The function of NCAM was further confirmed in NCAM-deficient mesenchymal stem cells (MSCs), which also had a phenotype with reduced osteoblastic potential. Moreover, NCAM silencing induced decrease of Wnt/ß-catenin and Akt activation. The Wnt inhibitor blocked osteoblast differentiation, and the Wnt activator recovered osteoblast differentiation in NCAM-silenced MC3T3-E1 cells. We lastly demonstrated that osteoblast differentiation of MC3T3-E1 cells was inhibited by the PI3K-Akt inhibitor. In conclusion, these results demonstrate that NCAM silencing inhibited osteoblastic differentiation through inactivation of Wnt/ß-catenin and PI3K-Akt signaling pathways.


Assuntos
Diferenciação Celular , Moléculas de Adesão de Célula Nervosa/metabolismo , Osteoblastos/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Linhagem Celular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Moléculas de Adesão de Célula Nervosa/genética , Osteoblastos/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais , Proteínas Wnt/genética , beta Catenina/genética
19.
Apoptosis ; 15(12): 1470-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20963499

RESUMO

Parkinson's disease (PD) is primarily caused by severe degeneration and loss of dopamine neurons in the substantia nigra pars compacta. Thus, preventing the death of dopaminergic neurons is thought to be a potential strategy to interfere with the development of PD. In the present work, we studied the effect of insulin-like growth factor-1 (IGF-1) on 1-methyl-4-phenylpyridinium (MPP+)-induced apoptosis in human neuroblastoma SH-EP1 cells. We found that the PI3K/AKT pathway plays a central role in IGF-mediated cell survival against MPP+ neurotoxicity. Furthermore, we demonstrated that the protective effect of AKT is largely dependent on the inactivation of GSK-3ß, since inhibition of GSK-3ß by its inhibitor, BIO, could mimic the protective effect of IGF-1 on MPP+-induced cell death in SH-EP1 cells. Interestingly, the IGF-1 potentiated PI3K/AKT activity is found to negatively regulate the JNK related apoptotic pathway and this negative regulation is further shown to be mediated by AKT-dependent GSK-3ß inactivation. Thus, our results demonstrated that IGF-1 protects SH-EP1 cells from MPP+-induced apoptotic cell death via PI3K/AKT/GSK-3ß pathway, which in turn inhibits MPP+-induced JNK activation.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Apoptose , Quinase 3 da Glicogênio Sintase/metabolismo , Fator de Crescimento Insulin-Like I , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular Tumoral , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Neuroblastoma/metabolismo , Neurônios/fisiologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-jun/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
20.
Neuropharmacology ; 176: 108241, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32712273

RESUMO

Cocaine abuse remains a public health threat around the world. There are no pharmacological treatments approved for cocaine use disorder. Cannabis has received growing attention as a treatment for many conditions, including addiction. Most cannabis-based medication development has focused on cannabinoid CB1 receptor (CB1R) antagonists (and also inverse agonists) such as rimonabant, but clinical trials with rimonabant have failed due to its significant side-effects. Here we sought to determine whether a novel and selective CB2R inverse agonist, Xie2-64, has similar therapeutic potential for cocaine use disorder. Computational modeling indicated that Xie2-64 binds to CB2R in a way similar to SR144528, another well-characterized but less selective CB2R antagonist/inverse agonist, suggesting that Xie2-64 may also have CB2R antagonist profiles. Unexpectedly, systemic administration of Xie2-64 or SR144528 dose-dependently inhibited intravenous cocaine self-administration and shifted cocaine dose-response curves downward in rats and wild-type, but not in CB2R-knockout, mice. Xie2-64 also dose-dependently attenuated cocaine-enhanced brain-stimulation reward maintained by optical stimulation of ventral tegmental area dopamine (DA) neurons in DAT-Cre mice, while Xie2-64 or SR144528 alone inhibited optical brain-stimulation reward. In vivo microdialysis revealed that systemic or local administration of Xie2-64 into the nucleus accumbens reduced extracellular dopamine levels in a dose-dependent manner in rats. Together, these results suggest that Xie2-64 has significant anti-cocaine reward effects likely through a dopamine-dependent mechanism, and therefore, deserves further study as a new pharmacotherapy for cocaine use disorder.


Assuntos
Derivados de Benzeno/uso terapêutico , Agonistas de Receptores de Canabinoides/uso terapêutico , Transtornos Relacionados ao Uso de Cocaína/prevenção & controle , Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Agonismo Inverso de Drogas , Receptor CB2 de Canabinoide/agonistas , Sulfonamidas/uso terapêutico , Animais , Derivados de Benzeno/química , Derivados de Benzeno/farmacologia , Agonistas de Receptores de Canabinoides/química , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/psicologia , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Knockout , Estrutura Secundária de Proteína , Ratos , Ratos Long-Evans , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/metabolismo , Roedores , Autoadministração , Sulfonamidas/química , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa