Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci China Life Sci ; 66(2): 340-349, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35982378

RESUMO

Golden2 (G2), a member of the GARP transcription factor superfamily, regulates several biological processes and phytohormone signaling pathways in plants. In this study, we used a rice codon-optimized maize G2 gene (rZmG2) to improve the regeneration efficiency of rice and maize calli for genetic transformation. We isolated a promoter driving strong and callus-specific expression from rice to drive rZmG2 transcription from a transgene after transformation of two indica and two japonica rice cultivars. The resulting rZmG2 transgenic calli turned green in advance at the differentiation stage, thus significantly raising the regeneration rates of the transgenic indica and japonica rice plants relative to control transformations. Similar effect of this gene on improving maize transformation was also observed. Transcriptome sequencing and RT-qPCR analyses showed that many rice genes related to chloroplast development and phytohormones are upregulated in rZmG2-transgenic calli. These results demonstrate that rZmG2 can promote embryogenic callus differentiation and improve regeneration efficiency by activating chloroplast development and phytohormone pathways. We also established a heat-inducible Cre/loxP-based gene-excision system to remove rZmG2 and the antibiotic selectable gene after obtaining the transgenic plants. This study provides a useful tool for functional genomics work and biotechnology in plants.


Assuntos
Oryza , Reguladores de Crescimento de Plantas , Zea mays/genética , Cloroplastos/genética , Antibacterianos/farmacologia , Plantas Geneticamente Modificadas/genética , Transformação Genética
2.
Animals (Basel) ; 10(4)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326606

RESUMO

Copy number variation (CNV) is a type of genomic variation with an important effect on animal phenotype. We found that the PIGY gene contains a 3600 bp copy number variation (CNV) region located in chromosome 6 of sheep (Oar_v4.0 36,121,601-36,125,200 bp). This region overlaps with multiple quantitative trait loci related to phenotypes like muscle density and carcass weight. Therefore, in this study, the copy number variation of the PIGY gene was screened in three Chinese sheep breeds, namely, Chaka sheep (CKS, May of 2018, Wulan County, Qinghai Province, China), Hu sheep (HS, May of 2015, Mengjin County, Henan Province, China), and small-tailed Han sheep (STHS, May of 2016, Yongjing, Gansu Province, China). Association analyses were performed on the presence of CNV and sheep body size traits. We used real-time quantitative PCR (qPCR) to detect the CNV for association analysis. According to the results, the loss-type CNV was more common than other types in the three breeds (global average: loss = 61.5%, normal = 17.5%, and gain = 21.0%). The association analysis also showed significant effects of the PIGY gene CNV on body weight, chest circumference, and circumference of the cannon bone of sheep. Sheep with gain-type CNV had better growth traits than those with other types. The results indicate a clear relationship between the PIGY gene CNV and growth traits of sheep, suggesting the use of CNV as a new molecular breeding marker.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa