RESUMO
Adaptation of liver to the postprandial state requires coordinated regulation of protein synthesis and folding aligned with changes in lipid metabolism. Here we demonstrate that sensory food perception is sufficient to elicit early activation of hepatic mTOR signaling, Xbp1 splicing, increased expression of ER-stress genes, and phosphatidylcholine synthesis, which translate into a rapid morphological ER remodeling. These responses overlap with those activated during refeeding, where they are maintained and constantly increased upon nutrient supply. Sensory food perception activates POMC neurons in the hypothalamus, optogenetic activation of POMC neurons activates hepatic mTOR signaling and Xbp1 splicing, whereas lack of MC4R expression attenuates these responses to sensory food perception. Chemogenetic POMC-neuron activation promotes sympathetic nerve activity (SNA) subserving the liver, and norepinephrine evokes the same responses in hepatocytes in vitro and in liver in vivo as observed upon sensory food perception. Collectively, our experiments unravel that sensory food perception coordinately primes postprandial liver ER adaption through a melanocortin-SNA-mTOR-Xbp1s axis. VIDEO ABSTRACT.
Assuntos
Retículo Endoplasmático/metabolismo , Preferências Alimentares , Melanocortinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Feminino , Regulação da Expressão Gênica , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Norepinefrina/farmacologia , Fosfatidilcolinas/análise , Fosfatidilcolinas/metabolismo , Análise de Componente Principal , Receptor Tipo 4 de Melanocortina/deficiência , Receptor Tipo 4 de Melanocortina/genética , Proteína 1 de Ligação a X-Box/genéticaRESUMO
Maintaining blood glucose at an appropriate physiological level requires precise coordination of multiple organs and tissues. The vagus nerve bidirectionally connects the central nervous system with peripheral organs crucial to glucose mobilization, nutrient storage, and food absorption, thereby presenting a key pathway for the central control of blood glucose levels. However, the precise mechanisms by which vagal populations that target discrete tissues participate in glucoregulation are much less clear. Here we review recent advances unraveling the cellular identity, neuroanatomical organization, and functional contributions of both vagal efferents and vagal afferents in the control of systemic glucose metabolism. We focus on their involvement in relaying glucoregulatory cues from the brain to peripheral tissues, particularly the pancreatic islet, and by sensing and transmitting incoming signals from ingested food to the brain. These recent findings - largely driven by advances in viral approaches, RNA sequencing, and cell-type selective manipulations and tracings - have begun to clarify the precise vagal neuron populations involved in the central coordination of glucose levels, and raise interesting new possibilities for the treatment of glucose metabolism disorders such as diabetes.
Assuntos
Glicemia , Nervo Vago , Glicemia/metabolismo , Nervo Vago/metabolismo , Glucose/metabolismoRESUMO
Physiological needs bias perception and attention to relevant sensory cues. This process is 'hijacked' by drug addiction, causing cue-induced cravings and relapse. Similarly, its dysregulation contributes to failed diets, obesity, and eating disorders. Neuroimaging studies in humans have implicated insular cortex in these phenomena. However, it remains unclear how 'cognitive' cortical representations of motivationally relevant cues are biased by subcortical circuits that drive specific motivational states. Here we develop a microprism-based cellular imaging approach to monitor visual cue responses in the insular cortex of behaving mice across hunger states. Insular cortex neurons demonstrate food-cue-biased responses that are abolished during satiety. Unexpectedly, while multiple satiety-related visceral signals converge in insular cortex, chemogenetic activation of hypothalamic 'hunger neurons' (expressing agouti-related peptide (AgRP)) bypasses these signals to restore hunger-like response patterns in insular cortex. Circuit mapping and pathway-specific manipulations uncover a pathway from AgRP neurons to insular cortex via the paraventricular thalamus and basolateral amygdala. These results reveal a neural basis for state-specific biased processing of motivationally relevant cues.
Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Alimentos , Homeostase , Vias Neurais , Estimulação Luminosa , Proteína Relacionada com Agouti/metabolismo , Animais , Sinais (Psicologia) , Fome/fisiologia , Hipotálamo/citologia , Hipotálamo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Resposta de Saciedade/fisiologiaRESUMO
Our increasing knowledge about gut-brain interaction is revolutionising the understanding of the links between digestion, mood, health, and even decision making in our everyday lives. In support of this interaction, the vagus nerve is a crucial pathway transmitting diverse gut-derived signals to the brain to monitor of metabolic status, digestive processes, or immune control to adapt behavioural and autonomic responses. Hence, neuromodulation methods targeting the vagus nerve are currently explored as a treatment option in a number of clinical disorders, including diabetes, chronic pain, and depression. The non-invasive variant of vagus nerve stimulation (VNS), transcutaneous auricular VNS (taVNS), has been implicated in both acute and long-lasting effects by modulating afferent vagus nerve target areas in the brain. The physiology of neither of those effects is, however, well understood, and evidence for neuronal response upon taVNS in vagal afferent projection regions in the brainstem and its downstream targets remain to be established. Therefore, to examine time-dependent effects of taVNS on brainstem neuronal responses in healthy human subjects, we applied taVNS during task-free fMRI in a single-blinded crossover design. During fMRI data acquisition, we either stimulated the left earlobe (sham), or the target zone of the auricular branch of the vagus nerve in the outer ear (cymba conchae, verum) for several minutes, both followed by a short 'stimulation OFF' period. Time-dependent effects were assessed by averaging the BOLD response for consecutive 1-minute periods in an ROI-based analysis of the brainstem. We found a significant response to acute taVNS stimulation, relative to the control condition, in downstream targets of vagal afferents, including the nucleus of the solitary tract, the substantia nigra, and the subthalamic nucleus. Most of these brainstem regions remarkably showed increased activity in response to taVNS, and these effect sustained during the post-stimulation period. These data demonstrate that taVNS activates key brainstem regions, and highlight the potential of this approach to modulate vagal afferent signalling. Furthermore, we show that carry-over effects need to be considered when interpreting fMRI data in the context of general vagal neurophysiology and its modulation by taVNS.
Assuntos
Tronco Encefálico/fisiologia , Imageamento por Ressonância Magnética/métodos , Estimulação do Nervo Vago/métodos , Nervo Vago/fisiologia , Adaptação Fisiológica , Adulto , Afeto , Vias Aferentes/fisiologia , Sistema Nervoso Autônomo/fisiologia , Estudos Cross-Over , Feminino , Humanos , Masculino , Sistema Nervoso Periférico/fisiologia , Estimulação Elétrica Nervosa TranscutâneaRESUMO
Efficient control of feeding behavior requires the coordinated adjustment of complex motivational and affective neurocircuits. Neuropeptides from energy-sensing hypothalamic neurons are potent feeding modulators, but how these endogenous signals shape relevant circuits remains unclear. Here, we examine how the orexigenic neuropeptide Y (NPY) adapts GABAergic inputs to the bed nucleus of the stria terminalis (BNST). We find that fasting increases synaptic connectivity between agouti-related peptide (AgRP)-expressing 'hunger' and BNST neurons, a circuit that promotes feeding. In contrast, GABAergic input from the central amygdala (CeA), an extended amygdala circuit that decreases feeding, is reduced. Activating NPY-expressing AgRP neurons evokes these synaptic adaptations, which are absent in NPY-deficient mice. Moreover, fasting diminishes the ability of CeA projections in the BNST to suppress food intake, and NPY-deficient mice fail to decrease anxiety in order to promote feeding. Thus, AgRP neurons drive input-specific synaptic plasticity, enabling a selective shift in hunger and anxiety signaling during starvation through NPY.
Assuntos
Proteína Relacionada com Agouti , Comportamento Alimentar , Plasticidade Neuronal , Neuropeptídeo Y , Núcleos Septais , Inanição , Animais , Neuropeptídeo Y/metabolismo , Neuropeptídeo Y/genética , Plasticidade Neuronal/fisiologia , Proteína Relacionada com Agouti/metabolismo , Proteína Relacionada com Agouti/genética , Comportamento Alimentar/fisiologia , Núcleos Septais/metabolismo , Núcleos Septais/fisiologia , Camundongos , Inanição/metabolismo , Masculino , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Neurônios/fisiologia , Neurônios GABAérgicos/metabolismo , Ingestão de Alimentos/fisiologia , Jejum/fisiologia , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Fome/fisiologiaRESUMO
Activation of prepronociceptin (PNOC)-expressing neurons in the arcuate nucleus (ARC) promotes high-fat-diet (HFD)-induced hyperphagia. In turn, PNOCARC neurons can inhibit the anorexic response of proopiomelanocortin (POMC) neurons. Here, we validate the necessity of PNOCARC activity for HFD-induced inhibition of POMC neurons in mice and find that PNOCARC-neuron-dependent inhibition of POMC neurons is mediated by gamma-aminobutyric acid (GABA) release. When monitoring individual PNOCARC neuron activity via Ca2+ imaging, we find a subpopulation of PNOCARC neurons that is inhibited upon gastrointestinal calorie sensing and disinhibited upon HFD feeding. Combining retrograde rabies tracing and circuit mapping, we find that PNOC neurons from the bed nucleus of the stria terminalis (PNOCBNST) provide inhibitory input to PNOCARC neurons, and this inhibitory input is blunted upon HFD feeding. This work sheds light on how an increase in caloric content of the diet can rewire a neuronal circuit, paving the way to overconsumption and obesity development.
Assuntos
Dieta Hiperlipídica , Hiperfagia , Núcleos Septais , Animais , Hiperfagia/metabolismo , Camundongos , Núcleos Septais/metabolismo , Neurônios/metabolismo , Masculino , Ácido gama-Aminobutírico/metabolismo , Pró-Opiomelanocortina/metabolismo , Neurônios GABAérgicos/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Camundongos Endogâmicos C57BL , Precursores de Proteínas , Receptores OpioidesRESUMO
GFRAL-expressing neurons actuate aversion and nausea, are targets for obesity treatment, and may mediate metformin effects by long-term GDF15-GFRAL agonism. Whether GFRAL+ neurons acutely regulate glucose and energy homeostasis is, however, underexplored. Here, we report that cell-specific activation of GFRAL+ neurons using a variety of techniques causes a torpor-like state, including hypothermia, the release of stress hormones, a shift from glucose to lipid oxidation, and impaired insulin sensitivity, glucose tolerance, and skeletal muscle glucose uptake but augmented glucose uptake in visceral fat. Metabolomic analysis of blood and transcriptomics of muscle and fat indicate alterations in ketogenesis, insulin signaling, adipose tissue differentiation and mitogenesis, and energy fluxes. Our findings indicate that acute GFRAL+ neuron activation induces endocrine and gluco- and thermoregulatory responses associated with nausea and torpor. While chronic activation of GFRAL signaling promotes weight loss in obesity, these results show that acute activation of GFRAL+ neurons causes hypothermia and hyperglycemia.
Assuntos
Glucose , Hipotermia , Náusea , Neurônios , Torpor , Animais , Neurônios/metabolismo , Náusea/metabolismo , Hipotermia/metabolismo , Torpor/fisiologia , Glucose/metabolismo , Camundongos , Masculino , Músculo Esquelético/metabolismo , Camundongos Endogâmicos C57BL , Insulina/metabolismo , Resistência à Insulina , Transdução de SinaisRESUMO
Enteroendocrine cells (EECs) constitute only a small proportion of Villin-1 (Vil1)-expressing intestinal epithelial cells (IECs) of the gastrointestinal tract; yet, in sum, they build the largest endocrine organ of the body, with each of them storing and releasing a distinct set of peptides for the control of feeding behavior, glucose metabolism, and gastrointestinal motility. Like all IEC types, EECs are continuously renewed from intestinal stem cells in the crypt base and terminally differentiate into mature subtypes while moving up the crypt-villus axis. Interestingly, EECs adjust their hormonal secretion according to their migration state as EECs receive altering differentiation signals along the crypt-villus axis and thus undergo functional readaptation. Cell-specific targeting of mature EEC subtypes by specific promoters is challenging because the expression of EEC-derived peptides and their precursors is not limited to EECs but are also found in other organs, such as the brain (e.g., Cck and Sst) as well as in the pancreas (e.g., Sst and Gcg). Here, we describe an intersectional genetic approach that enables cell type-specific targeting of functionally distinct EEC subtypes by combining a newly generated Dre-recombinase expressing mouse line (Vil1-2A-DD-Dre) with multiple existing Cre-recombinase mice and mouse strains with rox and loxP sites flanked stop cassettes for transgene expression. We found that transgene expression in triple-transgenic mice is highly specific in I but not D and L cells in the terminal villi of the small intestine. The targeting of EECs only in terminal villi is due to the integration of a defective 2A separating peptide that, combined with low EEC intrinsic Vil1 expression, restricts our Vil1-2A-DD-Dre mouse line and the intersectional genetic approach described here only applicable for the investigation of mature EEC subpopulations.
Assuntos
Duodeno , Intestino Delgado , Camundongos , Animais , Células Enteroendócrinas , Camundongos Transgênicos , PeptídeosRESUMO
Systemic metabolism has to be constantly adjusted to the variance of food intake and even be prepared for anticipated changes in nutrient availability. Therefore, the brain integrates multiple homeostatic signals with numerous cues that predict future deviations in energy supply. Recently, our understanding of the neural pathways underlying these regulatory principles-as well as their convergence in the hypothalamus as the key coordinator of food intake, energy expenditure, and glucose metabolism-have been revealed. These advances have changed our view of brain-dependent control of metabolic physiology. In this Review, we discuss new concepts about how alterations in these pathways contribute to the development of prevalent metabolic diseases such as obesity and type 2 diabetes mellitus and how this emerging knowledge may provide new targets for their treatment.
Assuntos
Eixo Encéfalo-Intestino , Diabetes Mellitus Tipo 2 , Ingestão de Alimentos , Metabolismo Energético , Hipotálamo , Vias Neurais , Obesidade , Humanos , Diabetes Mellitus Tipo 2/fisiopatologia , Homeostase , Hipotálamo/fisiologia , Obesidade/fisiopatologia , Vias Neurais/fisiopatologiaRESUMO
Engineered neurobiological tools for the manipulation of cellular activity, such as chemogenetics and optogenetics, have become a cornerstone of modern neuroscience research. These tools are invaluable for the interrogation of the central control of metabolism as they provide a direct means to establish a causal relationship between brain activity and biological processes at the cellular, tissue and organismal levels. The utility of these methods has grown substantially due to advances in cellular-targeting strategies, alongside improvements in the resolution and potency of such tools. Furthermore, the potential to recapitulate endogenous cellular signalling has been enriched by insights into the molecular signatures and activity dynamics of discrete brain cell types. However, each modulatory tool has a specific set of advantages and limitations; therefore, tool selection and suitability are of paramount importance to optimally interrogate the cellular and circuit-based underpinnings of metabolic outcomes within the organism. Here, we describe the key principles and uses of engineered neurobiological tools. We also highlight inspiring applications and outline critical considerations to be made when using these tools within the field of metabolism research. We contend that the appropriate application of these biotechnological advances will enable the delineation of the central circuitry regulating systemic metabolism with unprecedented potential.
RESUMO
The brain is tuned to integrate food-derived signals from the gut, allowing it to accurately adjust behavioral and physiological responses in accordance with nutrient availability. A key element of gut-to-brain communication is the relay of neural cues via peripheral sensory neurons (PSN) which harbor functionally specialized peripheral endings innervating the muscular and mucosal layers of gastrointestinal (GI) tract organs. In this review, we detail the properties of GI tract innervating PSN and describe their roles in regulating satiation and glucose metabolism in response to food consumption. We discuss the complex anatomical organization of vagal and spinal PSN subtypes, their peripheral and central projection patterns, and describe the limitations of unselective lesion and ablation approaches to investigate them. We then highlight the recent identification of molecular markers that allow selective targeting of PSN subtypes that innervate GI tract organs. This has facilitated accurately determining their projections, monitoring their responses to gut stimuli, and manipulating their activity. We contend that these recent developments have significantly improved our understanding of PSN-mediated gut-to-brain communication, which may open new therapeutic windows for the treatment of metabolic disorders, such as obesity and type 2 diabetes.
Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Encéfalo/fisiologia , Saciação , Nervo Vago , Glucose , Trato GastrointestinalRESUMO
Restricting caloric intake effectively reduces body weight, but most dieters fail long-term adherence to caloric deficit and eventually regain lost weight. Hypothalamic circuits that control hunger drive critically determine body weight; yet, how weight loss sculpts these circuits to motivate food consumption until lost weight is regained remains unclear. Here, we probe the contribution of synaptic plasticity in discrete excitatory afferents on hunger-promoting AgRP neurons. We reveal a crucial role for activity-dependent, remarkably long-lasting amplification of synaptic activity originating from paraventricular hypothalamus thyrotropin-releasing (PVHTRH) neurons in long-term body weight control. Silencing PVHTRH neurons inhibits the potentiation of excitatory input to AgRP neurons and diminishes concomitant regain of lost weight. Brief stimulation of the pathway is sufficient to enduringly potentiate this glutamatergic hunger synapse and triggers an NMDAR-dependent gaining of body weight that enduringly persists. Identification of this activity-dependent synaptic amplifier provides a previously unrecognized target to combat regain of lost weight.
Assuntos
Fome , Hipotálamo , Humanos , Fome/fisiologia , Proteína Relacionada com Agouti/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Peso CorporalRESUMO
Neurons in spinal dorsal horn lamina I play a pivotal role for nociception that critically depends on a proper balance between excitatory and inhibitory inputs. Any modification in synaptic strength may challenge this delicate balance. Long-term potentiation (LTP) at glutamatergic synapses between nociceptive C-fibers and lamina I neurons is an intensively studied cellular model of pain amplification. In contrast, nothing is presently known about long-term changes of synaptic strength at inhibitory synapses in the spinal dorsal horn. Using a spinal cord-dorsal root slice preparation from rats, we show that conditioning stimulation of primary afferent fibers with a stimulating protocol that induces LTP at C-fiber synapses also triggered LTP at GABAergic synapses (LTP(GABA)). This LTP(GABA) was heterosynaptic in nature and was mediated by activation of group I metabotropic glutamate receptors. Opening of ionotropic glutamate receptor channels of the AMPA/KA or NMDA subtype was not required for LTP(GABA). Paired-pulse ratio, coefficient of variation, and miniature IPSCs analysis revealed that LTP(GABA) was expressed presynaptically. Nitric oxide as a retrograde messenger signal mediated this increase of GABA release at spinal inhibitory synapses. This novel form of synaptic plasticity in spinal nociceptive circuits may be an essential mechanism to maintain the relative balance between excitation and inhibition and to improve the signal-to-noise ratio in nociceptive pathways.
Assuntos
Potenciação de Longa Duração/fisiologia , Neurônios Aferentes/fisiologia , Medula Espinal/fisiologia , Sinapses/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Estimulação Elétrica , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Óxido Nítrico/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo , Medula Espinal/citologia , Transmissão Sináptica/fisiologiaRESUMO
The hypothalamus plays a key role in coordinating fundamental body functions. Despite recent progress in single-cell technologies, a unified catalog and molecular characterization of the heterogeneous cell types and, specifically, neuronal subtypes in this brain region are still lacking. Here, we present an integrated reference atlas, 'HypoMap,' of the murine hypothalamus, consisting of 384,925 cells, with the ability to incorporate new additional experiments. We validate HypoMap by comparing data collected from Smart-Seq+Fluidigm C1 and bulk RNA sequencing of selected neuronal cell types with different degrees of cellular heterogeneity. Finally, via HypoMap, we identify classes of neurons expressing glucagon-like peptide-1 receptor (Glp1r) and prepronociceptin (Pnoc), and validate them using single-molecule in situ hybridization. Collectively, HypoMap provides a unified framework for the systematic functional annotation of murine hypothalamic cell types, and it can serve as an important platform to unravel the functional organization of hypothalamic neurocircuits and to identify druggable targets for treating metabolic disorders.
Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Hipotálamo , Camundongos , Animais , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Hipotálamo/metabolismo , Neurônios/metabolismo , Análise de Sequência de RNA , Expressão GênicaRESUMO
The intestinal peptide transporter PEPT1 mediates the uptake of di- and tripeptides derived from dietary protein breakdown into epithelial cells. Whereas the transporter appears to be essential to compensate for the reduced amino acid delivery in patients with mutations in amino acid transporter genes, such as in cystinuria or Hartnup disease, its physiological role in overall amino acid absorption is still not known. To assess the quantitative importance of PEPT1 in overall amino acid absorption and metabolism, PEPT1-deficient mice were studied by using brush border membrane vesicles, everted gut sacs, and Ussing chambers, as well as by transcriptome and proteome analysis of intestinal tissue samples. Neither gene expression nor proteome profiling nor functional analysis revealed evidence for any compensatory changes in the levels and/or function of transporters for free amino acids in the intestine. However, most plasma amino acid levels were increased in Pept1(-/-) compared with Pept1(+/+) animals, suggesting that amino acid handling is altered. Plasma appearance rates of (15)N-labeled amino acids determined after intragastric administration of a low dose of protein remained unchanged, whereas administration of a large protein load via gavage revealed marked differences in plasma appearance of selected amino acids. PEPT1 seems, therefore, important for overall amino acid absorption only after high dietary protein intake when amino acid transport processes are saturated and PEPT1 can provide additional absorption capacity. Since renal amino acid excretion remained unchanged, elevated basal concentrations of plasma amino acids in PEPT1-deficient animals seem to arise mainly from alterations in hepatic amino acid metabolism.
Assuntos
Aminoácidos/metabolismo , Proteínas Alimentares/administração & dosagem , Homeostase , Absorção Intestinal , Simportadores/metabolismo , Aminoácidos/sangue , Animais , Perfilação da Expressão Gênica , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvilosidades/metabolismo , Transportador 1 de Peptídeos , Proteoma/metabolismo , Simportadores/genéticaRESUMO
Body energy homeostasis results from balancing energy intake and energy expenditure. Central nervous system administration of pituitary adenylate cyclase activating polypeptide (PACAP) dramatically alters metabolic function, but the physiologic mechanism of this neuropeptide remains poorly defined. PACAP is expressed in the mediobasal hypothalamus (MBH), a brain area essential for energy balance. Ventromedial hypothalamic nucleus (VMN) neurons contain, by far, the largest and most dense population of PACAP in the medial hypothalamus. This region is involved in coordinating the sympathetic nervous system in response to metabolic cues in order to re-establish energy homeostasis. Additionally, the metabolic cue of leptin signaling in the VMN regulates PACAP expression. We hypothesized that PACAP may play a role in the various effector systems of energy homeostasis, and tested its role by using VMN-directed, but MBH encompassing, adeno-associated virus (AAVCre) injections to ablate Adcyap1 (gene coding for PACAP) in mice (Adcyap1MBHKO mice). Adcyap1MBHKO mice rapidly gained body weight and adiposity, becoming hyperinsulinemic and hyperglycemic. Adcyap1MBHKO mice exhibited decreased oxygen consumption (VO2), without changes in activity. These effects appear to be due at least in part to brown adipose tissue (BAT) dysfunction, and we show that PACAP-expressing cells in the MBH can stimulate BAT thermogenesis. While we observed disruption of glucose clearance during hyperinsulinemic/euglycemic clamp studies in obese Adcyap1MBHKO mice, these parameters were normal prior to the onset of obesity. Thus, MBH PACAP plays important roles in the regulation of metabolic rate and energy balance through multiple effector systems on multiple time scales, which highlight the diverse set of functions for PACAP in overall energy homeostasis.
Assuntos
Hipotálamo/metabolismo , Obesidade/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Tecido Adiposo Marrom , Animais , Peso Corporal , Metabolismo Energético , Feminino , Humanos , Leptina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Obesidade/genética , Obesidade/fisiopatologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Sistema Nervoso Simpático/metabolismo , Termogênese , Núcleo Hipotalâmico Ventromedial/metabolismoRESUMO
Sensory neurons relay gut-derived signals to the brain, yet the molecular and functional organization of distinct populations remains unclear. Here, we employed intersectional genetic manipulations to probe the feeding and glucoregulatory function of distinct sensory neurons. We reconstruct the gut innervation patterns of numerous molecularly defined vagal and spinal afferents and identify their downstream brain targets. Bidirectional chemogenetic manipulations, coupled with behavioral and circuit mapping analysis, demonstrated that gut-innervating, glucagon-like peptide 1 receptor (GLP1R)-expressing vagal afferents relay anorexigenic signals to parabrachial nucleus neurons that control meal termination. Moreover, GLP1R vagal afferent activation improves glucose tolerance, and their inhibition elevates blood glucose levels independent of food intake. In contrast, gut-innervating, GPR65-expressing vagal afferent stimulation increases hepatic glucose production and activates parabrachial neurons that control normoglycemia, but they are dispensable for feeding regulation. Thus, distinct gut-innervating sensory neurons differentially control feeding and glucoregulatory neurocircuits and may provide specific targets for metabolic control.
Assuntos
Regulação do Apetite , Eixo Encéfalo-Intestino/fisiologia , Glucose/metabolismo , Células Receptoras Sensoriais/fisiologia , Vias Aferentes/metabolismo , Animais , Apetite/fisiologia , Regulação do Apetite/genética , Comunicação Celular/genética , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos Transgênicos , Gânglio Nodoso/metabolismo , Gânglio Nodoso/fisiologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Nervo Vago/metabolismo , Nervo Vago/fisiologia , Proteína Wnt1/genética , Proteína Wnt1/metabolismoRESUMO
Pro-opiomelanocortin (POMC)-expressing neurons in the arcuate nucleus of the hypothalamus represent key regulators of metabolic homeostasis. Electrophysiological and single-cell sequencing experiments have revealed a remarkable degree of heterogeneity of these neurons. However, the exact molecular basis and functional consequences of this heterogeneity have not yet been addressed. Here, we have developed new mouse models in which intersectional Cre/Dre-dependent recombination allowed for successful labeling, translational profiling and functional characterization of distinct POMC neurons expressing the leptin receptor (Lepr) and glucagon like peptide 1 receptor (Glp1r). Our experiments reveal that POMCLepr+ and POMCGlp1r+ neurons represent largely nonoverlapping subpopulations with distinct basic electrophysiological properties. They exhibit a specific anatomical distribution within the arcuate nucleus and differentially express receptors for energy-state communicating hormones and neurotransmitters. Finally, we identify a differential ability of these subpopulations to suppress feeding. Collectively, we reveal a notably distinct functional microarchitecture of critical metabolism-regulatory neurons.
Assuntos
Comportamento Alimentar/fisiologia , Hipotálamo/fisiologia , Neurônios/fisiologia , Pró-Opiomelanocortina/metabolismo , Animais , Metabolismo Energético/fisiologia , Homeostase/fisiologia , Hipotálamo/citologia , Camundongos , Camundongos Transgênicos , Neurônios/citologiaRESUMO
Activation of Agouti-Related Peptide (AgRP)-expressing neurons promotes feeding and insulin resistance. Here, we examine the contribution of neuropeptide Y (NPY)-dependent signaling to the diverse physiological consequences of activating AgRP neurons. NPY-deficient mice fail to rapidly increase food intake during the first hour of either chemo- or optogenetic activation of AgRP neurons, while the delayed increase in feeding is comparable between control and NPY-deficient mice. Acutely stimulating AgRP neurons fails to induce systemic insulin resistance in NPY-deficient mice, while increased locomotor activity upon AgRP neuron stimulation in the absence of food remains unaffected in these animals. Selective re-expression of NPY in AgRP neurons attenuates the reduced feeding response and reverses the protection from insulin resistance upon optogenetic activation of AgRP neurons in NPY-deficient mice. Collectively, these experiments reveal a pivotal role of NPY-dependent signaling in mediating the rapid feeding inducing effect and the acute glucose regulatory function governed by AgRP neurons.
Assuntos
Proteína Relacionada com Agouti/metabolismo , Comportamento Alimentar/fisiologia , Glucose/metabolismo , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Proteína Relacionada com Agouti/genética , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Ingestão de Alimentos , Regulação da Expressão Gênica , Resistência à Insulina , Locomoção , Masculino , Camundongos Knockout , Neurônios/fisiologia , Neuropeptídeo Y/genética , Optogenética , Ácido gama-Aminobutírico/metabolismoRESUMO
Locomotion requires energy, yet animals need to increase locomotion in order to find and consume food in energy-deprived states. While such energy homeostatic coordination suggests brain origin, whether the central melanocortin 4 receptor (Mc4r) system directly modulates locomotion through motor circuits is unknown. Here, we report that hypothalamic Pomc neurons in zebrafish and mice have long-range projections into spinal cord regions harboring Mc4r-expressing V2a interneurons, crucial components of the premotor networks. Furthermore, in zebrafish, Mc4r activation decreases the excitability of spinal V2a neurons as well as swimming and foraging, while systemic or V2a neuron-specific blockage of Mc4r promotes locomotion. In contrast, in mice, electrophysiological recordings revealed that two-thirds of V2a neurons in lamina X are excited by the Mc4r agonist α-MSH, and acute inhibition of Mc4r signaling reduces locomotor activity. In addition, we found other Mc4r neurons in spinal lamina X that are inhibited by α-MSH, which is in line with previous studies in rodents where Mc4r agonists reduced locomotor activity. Collectively, our studies identify spinal V2a interneurons as evolutionary conserved second-order neurons of the central Mc4r system, providing a direct anatomical and functional link between energy homeostasis and locomotor control systems. The net effects of this modulatory system on locomotor activity can vary between different vertebrate species and, possibly, even within one species. We discuss the biological sense of this phenomenon in light of the ambiguity of locomotion on energy balance and the different living conditions of the different species.