Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Biol Chem ; 298(11): 102467, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36087839

RESUMO

Among voltage-gated potassium channel (KV) isoforms, KV1.6 is one of the most widespread in the nervous system. However, there are little data concerning its physiological significance, in part due to the scarcity of specific ligands. The known high-affinity ligands of KV1.6 lack selectivity, and conversely, its selective ligands show low affinity. Here, we present a designer peptide with both high affinity and selectivity to KV1.6. Previously, we have demonstrated that KV isoform-selective peptides can be constructed based on the simplistic α-hairpinin scaffold, and we obtained a number of artificial Tk-hefu peptides showing selective blockage of KV1.3 in the submicromolar range. We have now proposed amino acid substitutions to enhance their activity. As a result, we have been able to produce Tk-hefu-11 that shows an EC50 of ≈70 nM against KV1.3. Quite surprisingly, Tk-hefu-11 turns out to block KV1.6 with even higher potency, presenting an EC50 of ≈10 nM. Furthermore, we have solved the peptide structure and used molecular dynamics to investigate the determinants of selective interactions between artificial α-hairpinins and KV channels to explain the dramatic increase in KV1.6 affinity. Since KV1.3 is not highly expressed in the nervous system, we hope that Tk-hefu-11 will be useful in studies of KV1.6 and its functions.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Sequência de Aminoácidos , Bloqueadores dos Canais de Potássio/química , Peptídeos/química , Ligantes , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Canal de Potássio Kv1.3/genética , Canal de Potássio Kv1.3/metabolismo , Canal de Potássio Kv1.1/metabolismo , Canal de Potássio Kv1.2/metabolismo , Canal de Potássio Kv1.5/metabolismo
2.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569503

RESUMO

Formation of compact dinucleosomes (CODIs) occurs after collision between adjacent nucleosomes at active regulatory DNA regions. Although CODIs are likely dynamic structures, their structural heterogeneity and dynamics were not systematically addressed. Here, single-particle Förster resonance energy transfer (spFRET) and electron microscopy were employed to study the structure and dynamics of CODIs. spFRET microscopy in solution and in gel revealed considerable uncoiling of nucleosomal DNA from the histone octamer in a fraction of CODIs, suggesting that at least one of the nucleosomes is destabilized in the presence of the adjacent closely positioned nucleosome. Accordingly, electron microscopy analysis suggests that up to 30 bp of nucleosomal DNA are involved in transient uncoiling/recoiling on the octamer. The more open and dynamic nucleosome structure in CODIs cannot be stabilized by histone chaperone Spt6. The data suggest that proper internucleosomal spacing is an important determinant of chromatin stability and support the possibility that CODIs could be intermediates of chromatin disruption.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Nucleossomos , Cromatina , DNA/química , Microscopia Eletrônica
3.
Int J Mol Sci ; 24(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37762491

RESUMO

The natural flavonoid epigallocatechin gallate has a wide range of biological activities, including being capable of binding to nucleic acids; however, the mechanisms of the interactions of epigallocatechin gallate with DNA organized in chromatin have not been systematically studied. In this work, the interactions of epigallocatechin gallate with chromatin in cells and with nucleosomes and chromatosomes in vitro were studied using fluorescent microscopy and single-particle Förster resonance energy transfer approaches, respectively. Epigallocatechin gallate effectively penetrates into the nuclei of living cells and binds to DNA there. The interaction of epigallocatechin gallate with nucleosomes in vitro induces a large-scale, reversible uncoiling of nucleosomal DNA that occurs without the dissociation of DNA or core histones at sub- and low-micromolar concentrations of epigallocatechin gallate. Epigallocatechin gallate does not reduce the catalytic activity of poly(ADP-ribose) polymerase 1, but causes the modulation of the structure of the enzyme-nucleosome complex. Epigallocatechin gallate significantly changes the structure of chromatosomes, but does not cause the dissociation of the linker histone. The reorganization of nucleosomes and chromatosomes through the use of epigallocatechin gallate could facilitate access to protein factors involved in DNA repair, replication and transcription to DNA and, thus, might contribute to the modulation of gene expression through the use of epigallocatechin gallate, which was reported earlier.


Assuntos
Cromatina , Nucleossomos , Histonas/metabolismo , DNA/química
4.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37894874

RESUMO

In eukaryotic organisms, genomic DNA associates with histone proteins to form nucleosomes. Nucleosomes provide a basis for genome compaction, epigenetic markup, and mediate interactions of nuclear proteins with their target DNA loci. A negatively charged (acidic) patch located on the H2A-H2B histone dimer is a characteristic feature of the nucleosomal surface. The acidic patch is a common site in the attachment of various chromatin proteins, including viral ones. Acidic patch-binding peptides present perspective compounds that can be used to modulate chromatin functioning by disrupting interactions of nucleosomes with natural proteins or alternatively targeting artificial moieties to the nucleosomes, which may be beneficial for the development of new therapeutics. In this work, we used several computational and experimental techniques to improve our understanding of how peptides may bind to the acidic patch and what are the consequences of their binding. Through extensive analysis of the PDB database, histone sequence analysis, and molecular dynamic simulations, we elucidated common binding patterns and key interactions that stabilize peptide-nucleosome complexes. Through MD simulations and FRET measurements, we characterized changes in nucleosome dynamics conferred by peptide binding. Using fluorescence polarization and gel electrophoresis, we evaluated the affinity and specificity of the LANA1-22 peptide to DNA and nucleosomes. Taken together, our study provides new insights into the different patterns of intermolecular interactions that can be employed by natural and designed peptides to bind to nucleosomes, and the effects of peptide binding on nucleosome dynamics and stability.


Assuntos
Histonas , Nucleossomos , Histonas/metabolismo , Transferência Ressonante de Energia de Fluorescência , Cromatina , DNA/química , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Polarização de Fluorescência
5.
Microsc Microanal ; 28(1): 243-253, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35177143

RESUMO

Inorganic ions are essential factors stabilizing nucleosome structure; however, many aspects of their effects on DNA transactions in chromatin remain unknown. Here, differential effects of K+ and Na+ on the nucleosome structure, stability, and interactions with protein complex FACT (FAcilitates Chromatin Transcription), poly(ADP-ribose) polymerase 1, and RNA polymerase II were studied using primarily single-particle Förster resonance energy transfer microscopy. The maximal stabilizing effect of K+ on a nucleosome structure was observed at ca. 80­150 mM, and it decreased slightly at 40 mM and considerably at >300 mM. The stabilizing effect of Na+ is noticeably lower than that of K+ and progressively decreases at ion concentrations higher than 40 mM. At 150 mM, Na+ ions support more efficient reorganization of nucleosome structure by poly(ADP-ribose) polymerase 1 and ATP-independent uncoiling of nucleosomal DNA by FACT as compared with K+ ions. In contrast, transcription through a nucleosome is nearly insensitive to K+ or Na+ environment. Taken together, the data indicate that K+ environment is more preserving for chromatin structure during various nucleosome transactions than Na+ environment.


Assuntos
Cromatina , Nucleossomos , DNA , Íons
6.
Int J Mol Sci ; 23(13)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35806109

RESUMO

Human poly(ADP)-ribose polymerase-1 (PARP1) is a global regulator of various cellular processes, from DNA repair to gene expression. The underlying mechanism of PARP1 action during transcription remains unclear. Herein, we have studied the role of human PARP1 during transcription through nucleosomes by RNA polymerase II (Pol II) in vitro. PARP1 strongly facilitates transcription through mononucleosomes by Pol II and displacement of core histones in the presence of NAD+ during transcription, and its NAD+-dependent catalytic activity is essential for this process. Kinetic analysis suggests that PARP1 facilitates formation of "open" complexes containing nucleosomal DNA partially uncoiled from the octamer and allowing Pol II progression along nucleosomal DNA. Anti-cancer drug and PARP1 catalytic inhibitor olaparib strongly represses PARP1-dependent transcription. The data suggest that the negative charge on protein(s) poly(ADP)-ribosylated by PARP1 interact with positively charged DNA-binding surfaces of histones transiently exposed during transcription, facilitating transcription through chromatin and transcription-dependent histone displacement/exchange.


Assuntos
Histonas , Nucleossomos , Difosfato de Adenosina , DNA/química , Histonas/metabolismo , Humanos , Cinética , NAD/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Transcrição Gênica
7.
Int J Mol Sci ; 23(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35163644

RESUMO

Peptide pore blockers and their fluorescent derivatives are useful molecular probes to study the structure and functions of the voltage-gated potassium Kv1.3 channel, which is considered as a pharmacological target in the treatment of autoimmune and neurological disorders. We present Kv1.3 fluorescent ligand, GFP-MgTx, constructed on the basis of green fluorescent protein (GFP) and margatoxin (MgTx), the peptide, which is widely used in physiological studies of Kv1.3. Expression of the fluorescent ligand in E. coli cells resulted in correctly folded and functionally active GFP-MgTx with a yield of 30 mg per 1 L of culture. Complex of GFP-MgTx with the Kv1.3 binding site is reported to have the dissociation constant of 11 ± 2 nM. GFP-MgTx as a component of an analytical system based on the hybrid KcsA-Kv1.3 channel is shown to be applicable to recognize Kv1.3 pore blockers of peptide origin and to evaluate their affinities to Kv1.3. GFP-MgTx can be used in screening and pre-selection of Kv1.3 channel blockers as potential drug candidates.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Canal de Potássio Kv1.3 , Peptídeos/metabolismo , Bloqueadores dos Canais de Potássio/metabolismo , Sítios de Ligação , Humanos , Canal de Potássio Kv1.3/análise , Canal de Potássio Kv1.3/metabolismo , Ligantes , Ligação Proteica
8.
Sensors (Basel) ; 21(2)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440801

RESUMO

Bis(styryl) dye 1 bearing N-phenylazadithia-15-crown-5 ether receptor has been evaluated as a ratiometric fluorescent chemosensor for mercury (II) ions in living cells. In aqueous solution, probe 1 selectively responds to the presence of Hg2+ via the changes in the emission intensity as well as in the emission band shape, which is a result of formation of the complex with 1:1 metal to ligand ratio (dissociation constant 0.56 ± 0.15 µM). The sensing mechanism is based on the interplay between the RET (resonance energy transfer) and ICT (intramolecular charge transfer) interactions occurring upon the UV/Vis (380 or 405 nm) photoexcitation of both styryl chromophores in probe 1. Bio-imaging studies revealed that the yellow (500-600 nm) to red (600-730 nm) fluorescence intensity ratio decreased from 4.4 ± 0.2 to 1.43 ± 0.10 when cells were exposed to increasing concentration of mercury (II) ions enabling ratiometric quantification of intracellular Hg2+ concentration in the 37 nM-1 µM range.


Assuntos
Corantes Fluorescentes , Mercúrio , Éteres de Coroa , Éter , Humanos , Íons , Mercúrio/toxicidade
9.
Int J Mol Sci ; 22(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34768872

RESUMO

Poly (ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme involved in processes of cell cycle regulation, DNA repair, transcription, and replication. Hyperactivity of PARP-1 induced by changes in cell homeostasis promotes development of chronic pathological processes leading to cell death during various metabolic disorders, cardiovascular and neurodegenerative diseases. In contrast, tumor growth is accompanied by a moderate activation of PARP-1 that supports survival of tumor cells due to enhancement of DNA lesion repair and resistance to therapy by DNA damaging agents. That is why PARP inhibitors (PARPi) are promising agents for the therapy of tumor and metabolic diseases. A PARPi family is rapidly growing partly due to natural polyphenols discovered among plant secondary metabolites. This review describes mechanisms of PARP-1 participation in the development of various pathologies, analyzes multiple PARP-dependent pathways of cell degeneration and death, and discusses representative plant polyphenols, which can inhibit PARP-1 directly or suppress unwanted PARP-dependent cellular processes.


Assuntos
Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Animais , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/metabolismo , Reparo do DNA/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Poli(ADP-Ribose) Polimerase-1/fisiologia , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Polifenóis/metabolismo , Polifenóis/uso terapêutico
10.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34830005

RESUMO

Poly(ADP-ribose) polymerase 1 (PARP1) is an enzyme involved in DNA repair, chromatin organization and transcription. During transcription initiation, PARP1 interacts with gene promoters where it binds to nucleosomes, replaces linker histone H1 and participates in gene regulation. However, the mechanisms of PARP1-nucleosome interaction remain unknown. Here, using spFRET microscopy, molecular dynamics and biochemical approaches we identified several different PARP1-nucleosome complexes and two types of PARP1 binding to mononucleosomes: at DNA ends and end-independent. Two or three molecules of PARP1 can bind to a nucleosome depending on the presence of linker DNA and can induce reorganization of the entire nucleosome that is independent of catalytic activity of PARP1. Nucleosome reorganization depends upon binding of PARP1 to nucleosomal DNA, likely near the binding site of linker histone H1. The data suggest that PARP1 can induce the formation of an alternative nucleosome state that is likely involved in gene regulation and DNA repair.


Assuntos
Cromatina/genética , Proteínas de Ligação a DNA/genética , Nucleossomos/genética , Poli(ADP-Ribose) Polimerase-1/genética , Reparo do DNA/genética , Regulação da Expressão Gênica/genética , Histonas/genética , Humanos , Simulação de Dinâmica Molecular , Regiões Promotoras Genéticas/genética
11.
Bioorg Med Chem Lett ; 30(3): 126890, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31870648

RESUMO

Antibacterial activity of the three-finger toxins from cobra venom, including cytotoxin 3 from N. kaouthia, cardiotoxin-like basic polypeptide A5 from N. naja (CLBP), and alpha-neurotoxin from N. oxiana venom, was investigated. All toxins failed to influence Gram-negative bacteria. The most pronounced activity against Bacillus subtilis was demonstrated by CLBP. The latter is ascribed to the presence of additional Lys-residues within the membrane-binding motif of this toxin.


Assuntos
Antibacterianos/química , Venenos Elapídicos/metabolismo , Peptídeos/química , Sequência de Aminoácidos , Animais , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Cardiotoxinas/química , Elapidae/metabolismo , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Estrutura Terciária de Proteína , Staphylococcus aureus/efeitos dos fármacos
12.
J Biol Chem ; 293(16): 6121-6133, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29514976

RESUMO

The essential histone chaperone FACT (facilitates chromatin transcription) promotes both nucleosome assembly and disassembly. FACT is a heterodimer of Spt16 with either SSRP1 or Pob3, differing primarily by the presence of a high-mobility group B (HMGB) DNA-binding domain furnished only by SSRP1. Yeast FACT lacks the intrinsic HMGB domain found in SSRP1-based homologs such as human FACT, but yeast FACT activity is supported by Nhp6, which is a freestanding, single HMGB-domain protein. The importance of histone binding by FACT domains has been established, but the roles of DNA-binding activity remain poorly understood. Here, we examined these roles by fusing single or multiple HMGB modules to Pob3 to mimic SSRP1 or to test the effects of extended DNA-binding capacity. Human FACT and a yeast mimic both required Nhp6 to support nucleosome reorganization in vitro, indicating that a single intrinsic DNA-binding HMGB module is insufficient for full FACT activity. Three fused HMGB modules supported activity without Nhp6 assistance, but this FACT variant did not efficiently release from nucleosomes and was toxic in vivo Notably, intrinsic DNA-binding HMGB modules reduced the DNA accessibility and histone H2A-H2B dimer loss normally associated with nucleosome reorganization. We propose that DNA bending by HMGB domains promotes nucleosome destabilization and reorganization by exposing FACT's histone-binding sites, but DNA bending also produces DNA curvature needed to accommodate nucleosome assembly. Intrinsic DNA-bending activity therefore favors nucleosome assembly by FACT over nucleosome reorganization, but excessive activity impairs FACT release, suggesting a quality control checkpoint during nucleosome assembly.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas HMGB/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Chaperonas de Histonas/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Sítios de Ligação , DNA/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Dimerização , Proteínas de Grupo de Alta Mobilidade/química , Proteínas de Grupo de Alta Mobilidade/genética , Chaperonas de Histonas/química , Humanos , Modelos Teóricos , Conformação de Ácido Nucleico , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética
13.
Biochem Biophys Res Commun ; 517(3): 463-469, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31376942

RESUMO

One of the universal mechanisms for the response of Escherichia coli to stress is the increase of the synthesis of specific histone-like proteins that bind the DNA, Dps. As a result, two-and three-dimensional crystalline arrays may be observed in the cytoplasm of starving cells. Here, we determined the conditions to obtain very thin two-dimensional DNA-Dps co-crystals in vitro, and studied their projection structures, using electron microscopy. Analysis of the projection maps of the free Dps crystals revealed two lattice types: hexagonal and rectangular. We used the fluorescently labeled DNA to prove that the DNA is present within the co-crystals with Dps in vitro, and visualized its position using transmission electron microscopy. Molecular modeling confirmed the DNA position within the crystal. We have also suggested a structural model for the DNA-Dps co-crystal dissolving in the presence of Mg2+ ions.


Assuntos
Proteínas da Membrana Bacteriana Externa/ultraestrutura , DNA Bacteriano/ultraestrutura , Proteínas de Escherichia coli/ultraestrutura , Escherichia coli/ultraestrutura , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Carbocianinas/química , Cristalização , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Corantes Fluorescentes/química , Expressão Gênica , Cloreto de Magnésio/química , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Ligação Proteica , Coloração e Rotulagem/métodos
14.
J Nanobiotechnology ; 16(1): 18, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29466990

RESUMO

BACKGROUND: Recent advances in nanomedicine have shown the great interest of active targeting associated to nanoparticles. Single chain variable fragments (scFv) of disease-specific antibodies are very promising targeting entities because they are small, not immunogenic and able to bind their specific antigens. The present paper is devoted to biological properties in vitro and in vivo of fluorescent and pegylated iron oxide nanoparticles (SPIONs-Cy-PEG-scFv) functionalized with scFv targeting Human Epithelial growth Receptor 2 (HER2). RESULTS: Thanks to a site-selective scFv conjugation, the resultant nanoprobes demonstrated high affinity and specific binding to HER2 breast cancer cells. The cellular uptake of SPIONs-Cy-PEG-scFv was threefold higher than that for untargeted PEGylated iron oxide nanoparticles (SPIONs-Cy-PEG) and is correlated to the expression of HER2 on cells. In vivo, the decrease of MR signals in HER2+ xenograft tumor is about 30% at 24 h after the injection. CONCLUSIONS: These results all indicate that SPIONs-Cy-PEG-scFv are relevant tumor-targeting magnetic resonance imaging agents, suitable for diagnosis of HER2 overexpressing breast tumor.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Compostos Férricos/química , Corantes Fluorescentes/química , Nanopartículas/química , Polietilenoglicóis/química , Receptor ErbB-2/análise , Anticorpos de Cadeia Única/química , Animais , Linhagem Celular Tumoral , Meios de Contraste/química , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Camundongos Nus
15.
Biochim Biophys Acta Gen Subj ; 1861(6): 1578-1586, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27919801

RESUMO

BACKGROUND: This work is focused on mechanisms of uptake in cancer cells of rationally designed, covalently assembled nanoparticles, made of superparamagnetic iron oxide nanoparticles (SPIONs), fluorophores (doxorubicin or Nile Blue), polyethylene glycol (PEG) and folic acid (FA), referred hereinafter as SFP-FA. METHODS: SFP-FA were characterized by DLS, zetametry and fluorescence spectroscopy. The SFP-FA uptake in cancer cells was monitored using fluorescence-based methods like fluorescence-assisted cell sorting, CLSM with single-photon and two-photon excitation. The SFP-FA endocytosis was also analyzed with electron microscopy approaches: TEM, HAADF-STEM and EELS. RESULTS: The SFP-FA have zeta potential below -6mW and stable hydrodynamic diameter close to 100nm in aqueous suspensions of pH range from 5 to 8. They contain ca. 109 PEG-FA, 480 PEG-OCH3 and 22-27 fluorophore molecules per SPION. The fluorophores protected under the PEG shell allows a reliable detection of intracellular NPs. SFP-FA readily enter into all the cancer cell lines studied and accumulate in lysosomes, mostly via clathrin-dependent endocytosis, whatever the FR status on the cells. CONCLUSIONS: The present study highlights the advantages of rational design of nanosystems as well as the possible involvement of direct molecular interactions of PEG and FA with cellular membranes, not limited to FA-FR recognition, in the mechanisms of their endocytosis. GENERAL SIGNIFICANCE: Composition, magnetic and optical properties of the SFP-FA as well their ability to enter cancer cells are promising for their applications in cancer theranosis. Combination of complementary analytical approaches is relevant to understand the nanoparticles behavior in suspension and in contact with cells.


Assuntos
Antibióticos Antineoplásicos/metabolismo , Neoplasias da Mama/metabolismo , Clatrina/metabolismo , Doxorrubicina/metabolismo , Portadores de Fármacos , Endocitose , Ácido Fólico/metabolismo , Magnetismo/métodos , Nanopartículas de Magnetita , Nanomedicina/métodos , Polietilenoglicóis/química , Neoplasias do Colo do Útero/metabolismo , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Cavéolas/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Doxorrubicina/química , Doxorrubicina/farmacologia , Endossomos/metabolismo , Feminino , Ácido Fólico/química , Células HeLa , Humanos , Lisossomos/metabolismo , Células MCF-7 , Nanopartículas de Magnetita/química , Microscopia Confocal , Microscopia Eletrônica de Transmissão e Varredura , Microscopia de Fluorescência por Excitação Multifotônica , Espectroscopia de Perda de Energia de Elétrons , Neoplasias do Colo do Útero/tratamento farmacológico
16.
Phys Chem Chem Phys ; 19(44): 30195-30206, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29105711

RESUMO

Propargyl-152,173-dimethoxy-131-amide of bacteriochlorin e (BChl) and a 4-(4-N,N-dimethylaminostyryl)-N-alkyl-1,8-naphthalimide bearing azide group in the N-alkyl fragment were conjugated by the copper(i)-catalyzed 1,3-dipolar cycloaddition to produce a novel dyad compound BChl-NI for anticancer photodynamic therapy (PDT) combining the modalities of a photosensitizer (PS) and a fluorescence imaging agent. A precise photophysical investigation of the conjugate in solution using steady-state and time-resolved optical spectroscopy revealed that the presence of the naphthalimide (NI) fragment does not decrease the photosensitizing ability of the bacteriochlorin (BChl) core as compared with BChl; however, the fluorescence of naphthalimide is completely quenched due to resonance energy transfer (RET) to BChl. It has been shown that the BChl-NI conjugate penetrates into human lung adenocarcinoma A549 cells, and accumulates in the cytoplasm where it has a mixed granular-diffuse distribution. Both NI and BChl fluorescence in vitro provides registration of bright images showing perfectly intracellular distribution of BChl-NI. The ability of NI to emit light upon excitation in imaging experiments has been found to be due to hampering of RET as a result of photodestruction of the energy acceptor BChl unit. Phototoxicity studies have shown that the BChl-NI conjugate is not toxic for A549 cells at tested concentrations (<8 µM) without light-induced activation. At the same time, the concentration-dependent killing of cells is observed upon the excitation of the bacteriochlorin moiety with red light that occurs due to reactive oxygen species formation. The presented data demonstrate that the BChl-NI conjugate is a promissing dual function agent for cancer diagnostics and therapy.

17.
J Biol Chem ; 290(19): 12195-209, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25792741

RESUMO

The lesser Asian scorpion Mesobuthus eupeus (Buthidae) is one of the most widely spread and dispersed species of the Mesobuthus genus, and its venom is actively studied. Nevertheless, a considerable amount of active compounds is still under-investigated due to the high complexity of this venom. Here, we report a comprehensive analysis of putative potassium channel toxins (KTxs) from the cDNA library of M. eupeus venom glands, and we compare the deduced KTx structures with peptides purified from the venom. For the transcriptome analysis, we used conventional tools as well as a search for structural motifs characteristic of scorpion venom components in the form of regular expressions. We found 59 candidate KTxs distributed in 30 subfamilies and presenting the cysteine-stabilized α/ß and inhibitor cystine knot types of fold. M. eupeus venom was then separated to individual components by multistage chromatography. A facile fluorescent system based on the expression of the KcsA-Kv1.1 hybrid channels in Escherichia coli and utilization of a labeled scorpion toxin was elaborated and applied to follow Kv1.1 pore binding activity during venom separation. As a result, eight high affinity Kv1.1 channel blockers were identified, including five novel peptides, which extend the panel of potential pharmacologically important Kv1 ligands. Activity of the new peptides against rat Kv1.1 channel was confirmed (IC50 in the range of 1-780 nm) by the two-electrode voltage clamp technique using a standard Xenopus oocyte system. Our integrated approach is of general utility and efficiency to mine natural venoms for KTxs.


Assuntos
Canal de Potássio Kv1.1/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/química , Venenos de Escorpião/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Cromatografia , Escherichia coli/metabolismo , Feminino , Corantes Fluorescentes/química , Biblioteca Gênica , Concentração Inibidora 50 , Ligantes , Espectrometria de Massas , Dados de Sequência Molecular , Oócitos , Filogenia , Proteoma , Ratos , Escorpiões , Homologia de Sequência de Aminoácidos , Transcrição Gênica , Transcriptoma , Xenopus
18.
Cell Mol Life Sci ; 72(23): 4501-22, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26286896

RESUMO

Arthropod venoms feature the presence of cytolytic peptides believed to act synergetically with neurotoxins to paralyze prey or deter aggressors. Many of them are linear, i.e., lack disulfide bonds. When isolated from the venom, or obtained by other means, these peptides exhibit common properties. They are cationic; being mostly disordered in aqueous solution, assume amphiphilic α-helical structure in contact with lipid membranes; and exhibit general cytotoxicity, including antifungal, antimicrobial, hemolytic, and anticancer activities. To suit the pharmacological needs, the activity spectrum of these peptides should be modified by rational engineering. As an example, we provide a detailed review on latarcins (Ltc), linear cytolytic peptides from Lachesana tarabaevi spider venom. Diverse experimental and computational techniques were used to investigate the spatial structure of Ltc in membrane-mimicking environments and their effects on model lipid bilayers. The antibacterial activity of Ltc was studied against a panel of Gram-negative and Gram-positive bacteria. In addition, the action of Ltc on erythrocytes and cancer cells was investigated in detail with confocal laser scanning microscopy. In the present review, we give a critical account of the progress in the research of Ltc. We explore the relationship between Ltc structure and their biological activity and derive molecular characteristics, which can be used for optimization of other linear peptides. Current applications of Ltc and prospective use of similar membrane-active peptides are outlined.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos/química , Peptídeos/farmacologia , Venenos de Aranha/química , Sequência de Aminoácidos , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Membrana Celular/química , Membrana Celular/metabolismo , Hemolíticos/química , Hemolíticos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Venenos de Aranha/isolamento & purificação , Venenos de Aranha/farmacologia , Relação Estrutura-Atividade
19.
J Biol Chem ; 289(21): 14955-64, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24733396

RESUMO

The EphA2 receptor tyrosine kinase plays a central role in the regulation of cell adhesion and guidance in many human tissues. The activation of EphA2 occurs after proper dimerization/oligomerization in the plasma membrane, which occurs with the participation of extracellular and cytoplasmic domains. Our study revealed that the isolated transmembrane domain (TMD) of EphA2 embedded into the lipid bicelle dimerized via the heptad repeat motif L(535)X3G(539)X2A(542)X3V(546)X2L(549) rather than through the alternative glycine zipper motif A(536)X3G(540)X3G(544) (typical for TMD dimerization in many proteins). To evaluate the significance of TMD interactions for full-length EphA2, we substituted key residues in the heptad repeat motif (HR variant: G539I, A542I, G553I) or in the glycine zipper motif (GZ variant: G540I, G544I) and expressed YFP-tagged EphA2 (WT, HR, and GZ variants) in HEK293T cells. Confocal microscopy revealed a similar distribution of all EphA2-YFP variants in cells. The expression of EphA2-YFP variants and their kinase activity (phosphorylation of Tyr(588) and/or Tyr(594)) and ephrin-A3 binding were analyzed with flow cytometry on a single cell basis. Activation of any EphA2 variant is found to occur even without ephrin stimulation when the EphA2 content in cells is sufficiently high. Ephrin-A3 binding is not affected in mutant variants. Mutations in the TMD have a significant effect on EphA2 activity. Both ligand-dependent and ligand-independent activities are enhanced for the HR variant and reduced for the GZ variant compared with the WT. These findings allow us to suggest TMD dimerization switching between the heptad repeat and glycine zipper motifs, corresponding to inactive and active receptor states, respectively, as a mechanism underlying EphA2 signal transduction.


Assuntos
Motivos de Aminoácidos/genética , Mutação Puntual , Multimerização Proteica/genética , Receptor EphA2/genética , Sítios de Ligação/genética , Citometria de Fluxo , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Modelos Moleculares , Estrutura Terciária de Proteína , Receptor EphA2/química , Receptor EphA2/metabolismo
20.
Photochem Photobiol Sci ; 13(1): 92-102, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24258161

RESUMO

Further development of boron neutron capture therapy (BNCT) requires new neutronsensitizers with improved ability to deliver (10)B isotopes in cancer cells. Conjugation of boron nanoparticles with porphyrin derivatives is an attractive and recognized strategy to solve this task. We report on breakthroughs in the structural optimization of conjugates of chlorin e6 derivative with cobalt-bis(dicarbollide) nanoparticles resulting in the creation of dimethyl ester 13-carbomoylchlorin e6 [N-hexylamine-N'-ethoxyethoxy]-cobalt-bis(dicarbollide) (conjugate 1). Conjugate 1 is able to accumulate quickly and efficiently (distribution factor of 80) in cancer cells, thus delivering more than 10(9) boron atoms per cell when its extracellular concentration is more than 1 µmol L(-1). Also 1 is an active photosensitizer and is phototoxic towards human lung adenocarcinoma A549 cells at 80 nmol L(-1) (50% cell death). Photoinduced cytotoxicity of 1 is associated with lipid peroxidation, lysosome rupture and protease activity enhancement. Conjugate 1 fluoresces in the red region (670 nm), which is useful to monitor its accumulation and distribution in vivo. It is not toxic to cells without activation by neutrons or photons. Structural features that improve the functional properties of 1 are discussed. The properties of 1 warrant its preclinical evaluation as a multifunctional agent for BNCT, photodynamic therapy and fluorescent tumor diagnosis.


Assuntos
Boro/química , Nêutrons , Compostos Organometálicos/química , Fótons , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/química , Transporte Biológico , Boro/metabolismo , Terapia por Captura de Nêutron de Boro/métodos , Linhagem Celular Tumoral , Clorofilídeos , Ativação Enzimática/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Microscopia de Fluorescência , Nanopartículas/química , Peptídeo Hidrolases/metabolismo , Fármacos Fotossensibilizantes/síntese química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa