Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Ophthalmic Physiol Opt ; 43(4): 815-826, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36999932

RESUMO

PURPOSE: To create a simplified model of the eye by which we can specify a key optical characteristic of the crystalline lens, namely its power. METHODS: Cycloplegic refraction and axial length were obtained in 60 eyes of 30 healthy subjects at eccentricities spanning 40° nasal to 40° temporal and were fitted with a three-dimensional parabolic model. Keratometric values and geometric distances to the cornea, lens and retina from 45 eyes supplied a numerical ray tracing model. Posterior lens curvature (PLC) was found by optimising the refractive data using a fixed lens equivalent refractive index ( n eq ). Then, n eq was found using a fixed PLC. RESULTS: Eccentric refractive errors were relatively hyperopic in eyes with central refractions ≤-1.44 D but relatively myopic in emmetropes and hyperopes. Posterior lens power, which cannot be measured directly, was derived from the optimised model lens. There was a weak, negative association between derived PLC and central spherical equivalent refraction. Regardless of refractive error, the posterior retinal curvature remained fixed. CONCLUSIONS: By combining both on- and off-axis refractions and eye length measurements, this simplified model enabled the specification of posterior lens power and captured off-axis lenticular characteristics. The broad distribution in off-axis lens power represents a notable contrast to the relative stability of retinal curvature.


Assuntos
Lentes de Contato , Hiperopia , Miopia , Erros de Refração , Humanos , Olho , Miopia/diagnóstico , Refração Ocular , Retina
2.
Exp Eye Res ; 202: 108344, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33186570

RESUMO

The retinoschisin protein is encoded on the short arm of the X-chromosome by RS1, is expressed abundantly in photoreceptor inner segments and in bipolar cells, and is secreted as an octamer that maintains the structural integrity of the retina. Mutations in RS1 lead to X-linked retinoschisis (XLRS), a disease characterized by the formation of cystic spaces between boys' retinal layers that frequently present in ophthalmoscopy as a "spoke-wheel" pattern on their maculae and by progressively worsening visual acuity (VA). There is no proven therapy for XLRS, but there is mixed evidence that carbonic anhydrase inhibitors (CAIs) produce multiple beneficial effects, including improved VA and decreased volume of cystic spaces. Consequently, linear mixed-effects (LME) models were used to evaluate the effects of CAI therapy on VA and central retinal thickness (CRT, a proxy for cystic cavity volume) in a review of 19 patients' records. The mechanism of action of action of CAIs is unclear but, given that misplaced retinoschisin might accumulate in the photoreceptors, it is possible-perhaps even likely-that CAIs act to benefit the function of photoreceptors and the neighboring retinal pigment epithelium by acidification of the extracellular milieu; patients on CAIs have among the most robust photoreceptor responses. Therefore, a small subset of five subjects were recruited for imaging on a custom multimodal adaptive optics retinal imager for inspection of their parafoveal cone photoreceptors. Those cones that were visible, which numbered far fewer than in controls, were enlarged, consistent with the retinoschisin accumulation hypothesis. Results of the LME modeling found that there is an initial benefit to both VA and CRT in CAI therapy, but these wane, in both cases, after roughly two years. That said, even a short beneficial effect of CAIs on the volume of the cystic spaces may give CAI therapy an important role as pretreatment before (or immediately following) administration of gene therapy.


Assuntos
Inibidores da Anidrase Carbônica/uso terapêutico , Terapia Genética/métodos , Células Fotorreceptoras Retinianas Cones/metabolismo , Retinosquise/terapia , Acuidade Visual , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Oftalmoscopia , Retinosquise/genética , Retinosquise/metabolismo
3.
Diagnostics (Basel) ; 14(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38248061

RESUMO

The cellular-level visualization of retinal microstructures such as blood vessel wall components, not available with other imaging modalities, is provided with unprecedented details by dark-field imaging configurations; however, the interpretation of such images alone is sometimes difficult since multiple structural disturbances may be present in the same time. Particularly in eyes with retinal pathology, microstructures may appear in high-resolution retinal images with a wide range of sizes, sharpnesses, and brightnesses. In this paper we show that motion contrast and phase gradient imaging modalities, as well as the simultaneous acquisition of depth-resolved optical coherence tomography (OCT) images, provide additional insight to help understand the retinal neural and vascular structures seen in dark-field images and may enable improved diagnostic and treatment plans.

4.
Opt Lett ; 38(22): 4558-61, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24322073

RESUMO

We present a new application of optical coherence tomography (OCT), widely used in biomedical imaging, to flow analysis in near-wall hydrodynamics for marine research. This unique capability, called OCT micro-particle image velocimetry, provides a high-resolution view of microscopic flow phenomena and measurement of flow statistics within the first millimeter of a boundary layer. The technique is demonstrated in a small flow cuvette and in a water tunnel.


Assuntos
Microscopia/instrumentação , Imagem Molecular/instrumentação , Reologia/instrumentação , Tomografia de Coerência Óptica/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Microesferas
5.
Diagnostics (Basel) ; 13(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37443679

RESUMO

Adaptive optics provides improved resolution in ophthalmic imaging when retinal microstructures need to be identified, counted, and mapped. In general, multiple images are averaged to improve the signal-to-noise ratio or analyzed for temporal dynamics. Image registration by cross-correlation is straightforward for small patches; however, larger images require more sophisticated registration techniques. Strip-based registration has been used successfully for photoreceptor mosaic alignment in small patches; however, if the deformations along strips are not simple displacements, averaging can degrade the final image. We have applied a non-rigid registration technique that improves the quality of processed images for mapping cones over large image patches. In this approach, correction of local deformations compensates for local image stretching, compressing, bending, and twisting due to a number of causes. The main result of this procedure is improved definition of retinal microstructures that can be better identified and segmented. Derived metrics such as cone density, wall-to-lumen ratio, and quantification of structural modification of blood vessel walls have diagnostic value in many retinal diseases, including diabetic retinopathy and age-related macular degeneration, and their improved evaluations may facilitate early diagnostics of retinal diseases.

6.
J Opt Soc Am A Opt Image Sci Vis ; 29(12): 2598-607, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23455909

RESUMO

Optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) are complementary imaging modalities, the combination of which can provide clinicians with a wealth of information to detect retinal diseases, monitor disease progression, or assess new therapies. Adaptive optics (AO) is a tool that enables correction of wavefront distortions from ocular aberrations. We have developed a multimodal adaptive optics system (MAOS) for high-resolution multifunctional use in a variety of research and clinical applications. The system integrates both OCT and SLO imaging channels into an AO beam path. The optics and hardware were designed with specific features for simultaneous SLO/OCT output, for high-fidelity AO correction, for use in humans, primates, and small animals, and for efficient location and orientation of retinal regions of interest. The MAOS system was tested on human subjects and rodents. The design, performance characterization, and initial representative results from the human and animal studies are presented and discussed.


Assuntos
Oftalmoscópios , Retina/citologia , Tomografia de Coerência Óptica/instrumentação , Adulto , Animais , Desenho de Equipamento , Humanos , Lasers , Ratos , Ratos Sprague-Dawley
7.
Lasers Surg Med ; 44(8): 603-10, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22930575

RESUMO

BACKGROUND AND OBJECTIVE: Age-related macular degeneration is one of the leading causes of vision loss in the developed world. As the disease progresses, the central part of the retina, called the macula, is compromised leading to a disruption of both structure and visual function. In this study, we investigate the disruption of macular photoreceptor cells in vivo as a function of disease stage in patients with the dry form of age-related macular degeneration AMD. MATERIALS AND METHODS: An investigational confocal Adaptive Optics Scanning Laser Ophthalmoscope (AO-SLO) was used to obtain high resolution images of the macular photoreceptor mosaic in patients previously diagnosed with AMD. Four patients were selected as representative cases, comprising each of the four clinical stages of AMD progression. RESULTS: AO-SLO imaging revealed slight disruption in the photoreceptor mosaic in early stage AMD due to focal drusen formation and identified several small drusen deposits that were not observed with standard clinical imaging techniques. An increase in photoreceptor disruption was visualized within the macula in direct correlation with the stage of AMD progression leading to a decrease in visual acuity. Large coalescent drusen and areas of geographic atrophy in advanced stage dry AMD exhibited a significant decrease in visible photoreceptor density. Significant decrease in photoreceptor counts (∼35-50%) were observed when comparing earlier stages of AMD progression (Categories I and II) to later stages of the disease (Categories III and IV). CONCLUSIONS: This study demonstrates the capabilities of adaptive optics retinal imaging to monitor disruption of individual photoreceptor cells as a function of disease progression yielding valuable diagnostic findings in early stage AMD beyond what can be learned about the health of photoreceptors using conventional retinal imaging techniques. Lasers Surg. Med. 44: 603-610, 2012. © 2012 Wiley Periodicals, Inc.


Assuntos
Degeneração Macular/patologia , Oftalmoscopia , Células Fotorreceptoras de Vertebrados/patologia , Análise de Variância , Contagem de Células , Progressão da Doença , Atrofia Geográfica/patologia , Humanos , Lasers , Degeneração Macular/classificação , Projetos Piloto , Drusas Retinianas/patologia , Tomografia de Coerência Óptica , Acuidade Visual
8.
Opt Express ; 18(11): 11607-21, 2010 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-20589021

RESUMO

We developed a multimodal adaptive optics (AO) retinal imager which is the first to combine high performance AO-corrected scanning laser ophthalmoscopy (SLO) and swept source Fourier domain optical coherence tomography (SSOCT) imaging modes in a single compact clinical prototype platform. Such systems are becoming ever more essential to vision research and are expected to prove their clinical value for diagnosis of retinal diseases, including glaucoma, diabetic retinopathy (DR), age-related macular degeneration (AMD), and retinitis pigmentosa. The SSOCT channel operates at a wavelength of 1 microm for increased penetration and visualization of the choriocapillaris and choroid, sites of major disease activity for DR and wet AMD. This AO system is designed for use in clinical populations; a dual deformable mirror (DM) configuration allows simultaneous low- and high-order aberration correction over a large range of refractions and ocular media quality. The system also includes a wide field (33 deg.) line scanning ophthalmoscope (LSO) for initial screening, target identification, and global orientation, an integrated retinal tracker (RT) to stabilize the SLO, OCT, and LSO imaging fields in the presence of lateral eye motion, and a high-resolution LCD-based fixation target for presentation of visual cues. The system was tested in human subjects without retinal disease for performance optimization and validation. We were able to resolve and quantify cone photoreceptors across the macula to within approximately 0.5 deg (approximately 100-150 microm) of the fovea, image and delineate ten retinal layers, and penetrate to resolve features deep into the choroid. The prototype presented here is the first of a new class of powerful flexible imaging platforms that will provide clinicians and researchers with high-resolution, high performance adaptive optics imaging to help guide therapies, develop new drugs, and improve patient outcomes.


Assuntos
Lentes , Oftalmoscópios , Tomografia de Coerência Óptica/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Microscopia Confocal , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
J Opt Soc Am A Opt Image Sci Vis ; 27(11): A265-77, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21045887

RESUMO

We have developed a new, unified implementation of the adaptive optics scanning laser ophthalmoscope (AOSLO) incorporating a wide-field line-scanning ophthalmoscope (LSO) and a closed-loop optical retinal tracker. AOSLO raster scans are deflected by the integrated tracking mirrors so that direct AOSLO stabilization is automatic during tracking. The wide-field imager and large-spherical-mirror optical interface design, as well as a large-stroke deformable mirror (DM), enable the AOSLO image field to be corrected at any retinal coordinates of interest in a field of >25 deg. AO performance was assessed by imaging individuals with a range of refractive errors. In most subjects, image contrast was measurable at spatial frequencies close to the diffraction limit. Closed-loop optical (hardware) tracking performance was assessed by comparing sequential image series with and without stabilization. Though usually better than 10 µm rms, or 0.03 deg, tracking does not yet stabilize to single cone precision but significantly improves average image quality and increases the number of frames that can be successfully aligned by software-based post-processing methods. The new optical interface allows the high-resolution imaging field to be placed anywhere within the wide field without requiring the subject to re-fixate, enabling easier retinal navigation and faster, more efficient AOSLO montage capture and stitching.


Assuntos
Lasers , Movimento (Física) , Oftalmoscópios , Fenômenos Ópticos , Retina/fisiologia , Integração de Sistemas , Adulto , Automação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Software , Interface Usuário-Computador
10.
Invest Ophthalmol Vis Sci ; 61(11): 28, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32936301

RESUMO

Purpose: Because preterm birth and retinopathy of prematurity (ROP) are associated with poor visual acuity (VA) and altered foveal development, we evaluated relationships among the central retinal photoreceptors, postreceptor retinal neurons, overlying fovea, and VA in ROP. Methods: We obtained optical coherence tomograms (OCTs) in preterm born subjects with no history of ROP (none; n = 61), ROP that resolved spontaneously without treatment (mild; n = 51), and ROP that required treatment by laser ablation of the avascular peripheral retina (severe; n = 22), as well as in term born control subjects (term; n = 111). We obtained foveal shape descriptors, measured central retinal layer thicknesses, and demarcated the anatomic parafovea using automated routines. In subsets of these subjects, we obtained OCTs eccentrically through the pupil (n = 46) to reveal the fiber layer of Henle (FLH) and obtained adaptive optics scanning light ophthalmograms (AO-SLOs) of the parafoveal cones (n = 34) and measured their spacing and distribution. Results: Both VA and foveal depth decreased with increasing ROP severity (term, none, mild, severe). In severe subjects, foveae were broader than normal and the parafovea was significantly enlarged compared to every other group. The FLH was thinner than normal in mild (but not severe) subjects. VA was associated with foveal depth more than group. Density of parafoveal cones did not differ significantly among groups. Conclusions: Foveal structure is associated with loss of VA in ROP. The preserved FLH in severe (relative to mild) eyes suggests treatment may help cone axon development. The significantly larger parafovea and increased outer nuclear layer (ONL) thickness in ROP hint that some developmental process affecting the photoreceptors is not arrested in ROP but rather is supranormal.


Assuntos
Fóvea Central/patologia , Oftalmoscopia/métodos , Retinopatia da Prematuridade/diagnóstico , Tomografia de Coerência Óptica/métodos , Acuidade Visual , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Adulto Jovem
11.
Opt Express ; 17(12): 10242-58, 2009 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-19506678

RESUMO

We have developed a compact retinal imager that integrates adaptive optics (AO) into a line scanning ophthalmoscope (LSO). The bench-top AO-LSO instrument significantly reduces the size, complexity, and cost of research AO scanning laser ophthalmoscopes (AOSLOs), for the purpose of moving adaptive optics imaging more rapidly into routine clinical use. The AO-LSO produces high resolution retinal images with only one moving part and a significantly reduced instrument footprint and number of optical components. The AO-LSO has a moderate field of view (5.5 deg), which allows montages of the macula or other targets to be obtained more quickly and efficiently. In a preliminary human subjects investigation, photoreceptors could be resolved and counted within approximately 0.5 mm of the fovea. Photoreceptor counts matched closely to previously reported histology. The capillaries surrounding the foveal avascular zone could be resolved, as well as cells flowing within them. Individual nerve fiber bundles could be resolved, especially near the optic nerve head, as well as other structures such as the lamina cribrosa. In addition to instrument design, fabrication, and testing, software algorithms were developed for automated image registration and cone counting.


Assuntos
Lentes , Microscopia Confocal/instrumentação , Oftalmoscópios , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização , Projetos Piloto , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
J Biomed Opt ; 14(3): 034040, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19566332

RESUMO

An automated algorithm for differentiating breast tissue types based on optical coherence tomography (OCT) data is presented. Eight parameters are derived from the OCT reflectivity profiles and their means and covariance matrices are calculated for each tissue type from a training set (48 samples) selected based on histological examination. A quadratic discrimination score is then used to assess the samples from a validation set. The algorithm results for a set of 89 breast tissue samples were correlated with the histological findings, yielding specificity and sensitivity of 0.88. If further perfected to work in real time and yield even higher sensitivity and specificity, this algorithm would be a valuable tool for biopsy guidance and could significantly increase procedure reliability by reducing both the number of nondiagnostic aspirates and the number of false negatives.


Assuntos
Algoritmos , Neoplasias da Mama/patologia , Mama/citologia , Processamento de Sinais Assistido por Computador , Tomografia de Coerência Óptica/métodos , Tecido Adiposo/anatomia & histologia , Biópsia por Agulha Fina , Mama/patologia , Neoplasias da Mama/diagnóstico , Tomada de Decisões Assistida por Computador , Feminino , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Biomed Opt Express ; 10(1): 167-180, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30775091

RESUMO

The platform described here combines the non-invasive measurement of the retina/choroid structure and ocular blood flow based on optical coherence tomography (OCT) and wide-field semi-quantitative global flow visualization using line-scanning Doppler flowmetry (LSDF). The combination of these two imaging modalities within the same platform enables comprehensive assessment of blood flow in the retina and choroid in animals and human subjects for diagnostic purposes. Ultra-widefield vasculature visualization is demonstrated here for the first time without injecting additional contrast agents and based only on the motion of particles within the vasculature.

14.
Invest Ophthalmol Vis Sci ; 49(5): 2061-70, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18223243

RESUMO

PURPOSE: To describe the fine structure of the fovea in subjects with a history of mild retinopathy of prematurity (ROP) using adaptive optics-Fourier domain optical coherence tomography (AO-FDOCT). METHODS: High-speed, high-resolution AO-FDOCT videos were recorded in subjects with a history of ROP (n = 5; age range, 14-26 years) and in control subjects (n = 5; age range, 18-25 years). Custom software was used to extract foveal pit depth and volume from three-dimensional (3-D) retinal maps. The thickness of retinal layers as a function of retinal eccentricity was measured manually. The retinal vasculature in the parafoveal region was assessed. RESULTS: The foveal pit was wider and shallower in ROP than in control subjects. Mean pit depth, defined from the base to the level at which the pit reaches a lateral radius of 728 microm, was 121 microm compared with 53 microm. Intact, contiguous inner retinal layers overlay the fovea in ROP subjects but were absent in the control subjects. Mean full retinal thickness at the fovea was greater in the subjects with ROP (279.0 microm vs. 190.2 microm). The photoreceptor layer thickness did not differ between ROP and control subjects. An avascular zone was not identified in the subjects with ROP but was present in all the control subjects. CONCLUSIONS: The foveas of subjects with a history of mild ROP have significant structural abnormalities that are probably a consequence of perturbations of neurovascular development.


Assuntos
Análise de Fourier , Fóvea Central/patologia , Retinopatia da Prematuridade/diagnóstico , Tomografia de Coerência Óptica/métodos , Adolescente , Adulto , Idade Gestacional , Humanos , Recém-Nascido de Baixo Peso , Recém-Nascido , Refração Ocular , Vasos Retinianos/patologia , Acuidade Visual
15.
Biomed Opt Express ; 9(12): 5946-5961, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31065405

RESUMO

We demonstrate near-infrared autofluorescence (NIRAF) imaging of retinal pigment epithelial (RPE) cells in vivo in healthy volunteers and patients using a 757 nm excitation source in adaptive optics scanning laser ophthalmoscopy (AOSLO). NIRAF excited at 757 nm and collected in an emission band from 778 to 810 nm produced a robust NIRAF signal, presumably arising from melanin, and revealed the typical hexagonal mosaic of RPE cells at most eccentricities imaged within the macula of normal eyes. Several patterns of altered NIRAF structure were seen in patients, including disruption of the NIRAF over a drusen, diffuse hyper NIRAF signal with loss of individual cell delineation in a case of non-neovascular age-related macular degeneration (AMD), and increased visibility of the RPE mosaic under an area showing loss of photoreceptors. In some participants, a superposed cone mosaic was clearly visible in the fluorescence channel at eccentricities between 2 and 6° from the fovea. This was reproducible in these participants and existed despite the use of emission filters with an optical attenuation density of 12 at the excitation wavelength, minimizing the possibility that this was due to bleed through of the excitation light. This cone signal may be a consequence of cone waveguiding on either the ingoing excitation light and/or the outgoing NIRAF emitted by fluorophores within the RPE and/or choroid and warrants further investigation. NIRAF imaging at 757 nm offers efficient signal excitation and detection, revealing structural alterations in retinal disease with good contrast and shows promise as a tool for monitoring future therapies at the level of single RPE cells.

16.
Invest Ophthalmol Vis Sci ; 47(3): 964-7, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16505030

RESUMO

PURPOSE: To develop an eye-motion-tracking optical coherence tomographic (OCT) method and assess its effect on image registration and nerve fiber layer (NFL) thickness measurement reproducibility. METHODS: A system capable of tracking common fundus features based on reflectance changes was integrated into a commercial OCT unit (OCT II; Carl Zeiss Meditec, Inc., Dublin, CA) and tested on healthy subjects and patients with glaucoma. Twenty successive peripapillary NFL scans were obtained with tracking and 20 without tracking, for 40 images in each session for each eye. Subjects participated in one session on three different days. Composite OCT scans and composite fundus images were generated for assessment of eye tracking. NFL thickness measurement reproducibility was also assessed. RESULTS: Seven healthy and nine glaucomatous eyes of 16 subjects were recruited. A qualitative assessment of composite OCT scans and composite fundus images showed little motion artifact or blurring along edges and blood vessels during tracking; however, those structures were less clearly defined when tracking was disengaged. There was no significant reproducibility difference with and without tracking in both intra- and intersession NFL measurement SD calculations in any location. The mean retinal pixel SD was significantly smaller with tracking than without (490.9 +/- 19.3 microm vs. 506.4 +/- 31.8 microm, P = 0.005, paired t-test). CONCLUSIONS: A retinal-tracking system was successfully developed and integrated into a commercial OCT unit. Tracking OCT improved the consistency of scan registration, but did not influence NFL thickness measurement reproducibility in this small sample study.


Assuntos
Técnicas de Diagnóstico Oftalmológico , Movimentos Oculares , Glaucoma/diagnóstico , Fibras Nervosas/patologia , Disco Óptico/fisiopatologia , Células Ganglionares da Retina/patologia , Tomografia de Coerência Óptica/métodos , Adulto , Idoso , Humanos , Reprodutibilidade dos Testes
17.
Opt Express ; 14(8): 3354-67, 2006 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19516480

RESUMO

A retinal imaging instrument that integrates adaptive optics (AO), scanning laser ophthalmoscopy (SLO), and retinal tracking components was built and tested. The system uses a Hartmann-Shack wave-front sensor (HS-WS) and MEMS-based deformable mirror (DM) for AO-correction of high-resolution, confocal SLO images. The system includes a wide-field line-scanning laser ophthalmoscope for easy orientation of the high-magnification SLO raster. The AO system corrected ocular aberrations to <0.1 mum RMS wave-front error. An active retinal tracking with custom processing board sensed and corrected eye motion with a bandwidth exceeding 1 kHz. We demonstrate tracking accuracy down to 6 mum RMS for some subjects (typically performance: 10-15 mum RMS). The system has the potential to become an important tool to clinicians and researchers for vision studies and the early detection and treatment of retinal diseases.

18.
Opt Express ; 14(8): 3377-88, 2006 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19516482

RESUMO

We demonstrate in vivo measurements in human retinal vessels of an experimental parameter, the slope of the low coherence interferometry (LCI) depth reflectivity profile, which strongly correlates with the real value of blood hematocrit. A novel instrument that combines two technologies, spectral domain low coherence interferometry (SDLCI) and retinal tracking, has been developed and used for these measurements. Retinal tracking allows a light beam to be stabilized on retinal vessels, while SDLCI is used for obtaining depth-reflectivity profiles within the investigated vessel. SDLCI backscatter extinction rates are obtained from the initial slope of the A-scan profile within the vessel lumen. The differences in the slopes of the depth reflectivity profiles for different subjects are interpreted as the difference in the scattering coefficient, which is correlated with the number density of red blood cells (RBC) in blood. With proper calibration, it is possible to determine hematocrit in retinal vessels. Ex vivo measurements at various RBC concentrations were performed to calibrate the instrument. Preliminary measurements on several healthy volunteers show estimated hematocrit values within the normal clinical range.

19.
J Biomed Opt ; 11(4): 041126, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16965154

RESUMO

Scanning laser ophthalmoscopy (SLO) is a powerful imaging tool with specialized applications limited to research and ophthalmology clinics due in part to instrument size, cost, and complexity. Conversely, low-cost retinal imaging devices have limited capabilities in screening, detection, and diagnosis of diseases. To fill the niche between these two, a hand-held, nonmydriatic line-scanning laser ophthalmoscope (LSLO) is designed, constructed, and tested on normal human subjects. The LSLO has only one moving part and uses a novel optical approach to produce wide-field confocal fundus images. Imaging modes include multiwavelength illumination and live stereoscopic imaging with a split aperture. Image processing and display functions are controlled with two stacked prototype compact printed circuit boards. With near shot-noise limited performance, the digital LSLO camera requires low illumination power (<500 microW) at near-infrared wavelengths. The line-scanning principle of operation is examined in comparison to SLO and other imaging modes. The line-scanning approach produces high-contrast confocal images with nearly the same performance as a flying-spot SLO. The LSLO may significantly enhance SLO utility for routine use by ophthalmologists, optometrists, general practitioners, and also emergency medical personnel and technicians in the field for retinal disease detection and other diverse applications.


Assuntos
Aumento da Imagem/instrumentação , Interpretação de Imagem Assistida por Computador/instrumentação , Microscopia Confocal/instrumentação , Oftalmoscópios , Processamento de Sinais Assistido por Computador/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Armazenamento e Recuperação da Informação/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Retin Cases Brief Rep ; 10(4): 302-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26735319

RESUMO

PURPOSE: To elucidate the location of pathological changes in multiple evanescent white dot syndrome (MEWDS) with the use of multimodal adaptive optics (AO) imaging. METHODS: A 5-year observational case study of a 24-year-old female with recurrent MEWDS. Full examination included history, Snellen chart visual acuity, pupil assessment, intraocular pressures, slit lamp evaluation, dilated fundoscopic exam, imaging with Fourier-domain optical coherence tomography (FD-OCT), blue-light fundus autofluorescence (FAF), fundus photography, fluorescein angiography, and adaptive-optics optical coherence tomography. RESULTS: Three distinct acute episodes of MEWDS occurred during the period of follow-up. Fourier-domain optical coherence tomography and adaptive-optics imaging showed disturbance in the photoreceptor outer segments (PR OS) in the posterior pole with each flare. The degree of disturbance at the photoreceptor level corresponded to size and extent of the visual field changes. All findings were transient with delineation of the photoreceptor recovery from the outer edges of the lesion inward. Hyperautofluorescence was seen during acute flares. Increase in choroidal thickness did occur with each active flare but resolved. CONCLUSION: Although changes in the choroid and RPE can be observed in MEWDS, Fourier-domain optical coherence tomography, and multimodal adaptive optics imaging localized the visually significant changes seen in this disease at the level of the photoreceptors. These transient retinal changes specifically occur at the level of the inner segment ellipsoid and OS/RPE line. En face optical coherence tomography imaging provides a detailed, yet noninvasive method for following the convalescence of MEWDS and provides insight into the structural and functional relationship of this transient inflammatory retinal disease.


Assuntos
Imagem Multimodal , Óptica e Fotônica/métodos , Doenças Retinianas/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Feminino , Angiofluoresceinografia , Humanos , Microscopia Confocal , Imagem Multimodal/métodos , Doenças Retinianas/fisiopatologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa