Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 122(3): 3966-3995, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34962796

RESUMO

Direct conversion of methane to C2 compounds by oxidative and nonoxidative coupling reactions has been intensively studied in the past four decades; however, because these reactions have intrinsic severe thermodynamic constraints, they have not become viable industrially. Recently, with the increasing availability of inexpensive "green electrons" coming from renewable sources, electrochemical technologies are gaining momentum for reactions that have been challenging for more conventional catalysis. Using solid-state membranes to control the reacting species and separate products in a single step is a crucial advantage. Devices using ionic or mixed ionic-electronic conductors can be explored for methane coupling reactions with great potential to increase selectivity. Although these technologies are still in the early scaling stages, they offer a sustainable path for the utilization of methane and benefit from the advances in both solid oxide fuel cells and electrolyzers. This review identifies promising developments for solid-state methane conversion reactors by assessing multifunctional layers with microstructural control; combining solid electrolytes (proton and oxygen ion conductors) with active and selective electrodes/catalysts; applying more efficient reactor designs; understanding the reaction/degradation mechanisms; defining standards for performance evaluation; and carrying techno-economic analysis.


Assuntos
Metano , Óxidos , Eletrodos , Hidrocarbonetos , Metano/química , Óxidos/química , Temperatura
2.
Artigo em Inglês | MEDLINE | ID: mdl-23542748

RESUMO

Nanomaterials (NM) industry had grown in the last decade, although there are few studies concerning its potential toxicity effects on aquatic organisms. In this study the freshwater zebrafish (Danio rerio) was exposed to two kinds of carbon NM, single-wall carbon nanotubes (SWCNT) and fullerenol [C60(OH)18-22(OK4)] to analyze oxidative stress responses on fish brain. Adult zebrafish (mean mass: 0.52±0.01g) were submitted to intraperitoneal injections of SWCNT suspension and fullerenol solution (30mg/kg of fish), receiving one or two doses with a time interval of 24h. Results showed that total antioxidant capacity was lowered in brains of fish exposed 24h to fullerenol when compared to those from SWCNT treatment (p<0.05). After 48h, fullerenol induced higher expression of both catalytic and regulatory subunits of enzyme glutamate cysteine ligase when compared to control group (p<0.05), indicating an antioxidant behavior. In vitro assays showed a dual effect of SWCNT, since a pro-oxidant behavior was observed at low concentrations (0.1 and 1.0mg/L) and an antioxidant one at the highest concentration (10.0mg/L). Few biological responses were altered by this NM: decrease in total antioxidant capacity and induction of the expression of the transcription factor Nrf2 when compared to control group.


Assuntos
Antioxidantes/metabolismo , Encéfalo/efeitos dos fármacos , Fulerenos/administração & dosagem , Nanotubos de Carbono/química , Animais , Domínio Catalítico , Fulerenos/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Glutamato-Cisteína Ligase/metabolismo , Fator 2 Relacionado a NF-E2/biossíntese , Estresse Oxidativo , Espécies Reativas de Oxigênio , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/biossíntese
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa