Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 569
Filtrar
Mais filtros

Coleção SES
Intervalo de ano de publicação
1.
RNA ; 29(12): 1839-1855, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37816550

RESUMO

The tremendous rate with which data is generated and analysis methods emerge makes it increasingly difficult to keep track of their domain of applicability, assumptions, limitations, and consequently, of the efficacy and precision with which they solve specific tasks. Therefore, there is an increasing need for benchmarks, and for the provision of infrastructure for continuous method evaluation. APAeval is an international community effort, organized by the RNA Society in 2021, to benchmark tools for the identification and quantification of the usage of alternative polyadenylation (APA) sites from short-read, bulk RNA-sequencing (RNA-seq) data. Here, we reviewed 17 tools and benchmarked eight on their ability to perform APA identification and quantification, using a comprehensive set of RNA-seq experiments comprising real, synthetic, and matched 3'-end sequencing data. To support continuous benchmarking, we have incorporated the results into the OpenEBench online platform, which allows for continuous extension of the set of methods, metrics, and challenges. We envisage that our analyses will assist researchers in selecting the appropriate tools for their studies, while the containers and reproducible workflows could easily be deployed and extended to evaluate new methods or data sets.


Assuntos
Benchmarking , RNA , RNA/genética , RNA-Seq , Poliadenilação , Análise de Sequência de RNA/métodos
2.
J Proteome Res ; 23(1): 418-429, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38038272

RESUMO

The inherent diversity of approaches in proteomics research has led to a wide range of software solutions for data analysis. These software solutions encompass multiple tools, each employing different algorithms for various tasks such as peptide-spectrum matching, protein inference, quantification, statistical analysis, and visualization. To enable an unbiased comparison of commonly used bottom-up label-free proteomics workflows, we introduce WOMBAT-P, a versatile platform designed for automated benchmarking and comparison. WOMBAT-P simplifies the processing of public data by utilizing the sample and data relationship format for proteomics (SDRF-Proteomics) as input. This feature streamlines the analysis of annotated local or public ProteomeXchange data sets, promoting efficient comparisons among diverse outputs. Through an evaluation using experimental ground truth data and a realistic biological data set, we uncover significant disparities and a limited overlap in the quantified proteins. WOMBAT-P not only enables rapid execution and seamless comparison of workflows but also provides valuable insights into the capabilities of different software solutions. These benchmarking metrics are a valuable resource for researchers in selecting the most suitable workflow for their specific data sets. The modular architecture of WOMBAT-P promotes extensibility and customization. The software is available at https://github.com/wombat-p/WOMBAT-Pipelines.


Assuntos
Benchmarking , Proteômica , Fluxo de Trabalho , Software , Proteínas , Análise de Dados
3.
Phys Rev Lett ; 132(20): 206102, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38829060

RESUMO

The liquid-to-solid phase transition is a complex process that is difficult to investigate experimentally with sufficient spatial and temporal resolution. A key aspect of the transition is the formation of a critical seed of the crystalline phase in a supercooled liquid, that is, a liquid in a metastable state below the melting temperature. This stochastic process is commonly described within the framework of classical nucleation theory, but accurate tests of the theory in atomic and molecular liquids are challenging. Here, we employ femtosecond x-ray diffraction from microscopic liquid jets to study crystal nucleation in supercooled liquids of the rare gases argon and krypton. Our results provide stringent limits to the validity of classical nucleation theory in atomic liquids, and offer the long-sought possibility of testing nonclassical extensions of the theory.

4.
Chemistry ; 30(2): e202303041, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37828571

RESUMO

The "carbohydrate chemical mimicry" exhibited by sp2 -iminosugars has been utilized to develop practical syntheses for analogs of the branched high-mannose-type oligosaccharides (HMOs) Man3 and Man5 . In these compounds, the terminal nonreducing Man residues have been substituted with 5,6-oxomethylidenemannonojirimycin (OMJ) motifs. The resulting oligomannoside hemimimetic accurately reproduce the structure, configuration, and conformational behavior of the original mannooligosaccharides, as confirmed by NMR and computational techniques. Binding studies with mannose binding lectins, including concanavalin A, DC-SIGN, and langerin, by enzyme-linked lectin assay and surface plasmon resonance revealed significant variations in their ability to accommodate the OMJ unit in the mannose binding site. Intriguingly, OMJMan segments demonstrated "in line" heteromultivalent effects during binding to the three lectins. Similar to the mannobiose (Man2 ) branches in HMOs, the binding modes involving the external or internal monosaccharide unit at the carbohydrate binding-domain exist in equilibrium, facilitating sliding and recapture processes. This equilibrium, which influences the multivalent binding of HMOs, can be finely modulated upon incorporation of the OMJ sp2 -iminosugar caps. As a proof of concept, the affinity and selectivity towards DC-SIGN and langerin were adjustable by presenting the OMJMan epitope in platforms with diverse architectures and valencies.


Assuntos
Lectinas Tipo C , Manose , Humanos , Concanavalina A/metabolismo , Manose/química , Lectinas Tipo C/metabolismo , Oligossacarídeos/química , Sítios de Ligação , Lectinas de Ligação a Manose/química
5.
Bioorg Chem ; 150: 107555, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38885548

RESUMO

The conventional approach to developing light-sensitive glycosidase activity regulators, involving the combination of a glycomimetic moiety and a photoactive azobenzene module, results in conjugates with differences in glycosidase inhibitory activity between the interchangeable E and Z-isomers at the azo group that are generally below one-order of magnitude. In this study, we have exploited the chemical mimic character of sp2-iminosugars to access photoswitchable p- and o-azobenzene α-O-glycosides based on the gluco-configured representative ONJ. Notably, we achieved remarkably high switching factors for glycosidase inhibition, favoring either the E- or Z-isomer depending on the aglycone structure. Our data also indicate a correlation between the isomeric state of the azobenzene module and the selectivity towards α- and ß-glucosidase isoenzymes. The most effective derivative reached over a 103-fold higher inhibitory potency towards human ß-glucocerebrosidase in the Z as compared with the E isomeric form. This sharp contrast is compatible with ex-vivo activation and programmed self-deactivation at physiological temperatures, positioning it as a prime candidate for pharmacological chaperone therapy in Gaucher disease. Additionally, our results illustrate that chemical tailoring enables the engineering of photocommutators with the ability to toggle inhibition between α- and ß-glucosidase enzymes in a reversible manner, thus expanding the versatility and potential therapeutic applications of this approach.

6.
Sensors (Basel) ; 24(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474919

RESUMO

One of the most consumed foods is milk and milk products, and guaranteeing the suitability of these products is one of the major concerns in our society. This has led to the development of numerous sensors to enhance quality controls in the food chain. However, this is not a simple task, because it is necessary to establish the parameters to be analyzed and often, not only one compound is responsible for food contamination or degradation. To attempt to address this problem, a multiplex analysis together with a non-directed (e.g., general parameters such as pH) analysis are the most relevant alternatives to identifying the safety of dairy food. In recent years, the use of new technologies in the development of devices/platforms with optical or electrochemical signals has accelerated and intensified the pursuit of systems that provide a simple, rapid, cost-effective, and/or multiparametric response to the presence of contaminants, markers of various diseases, and/or indicators of safety levels. However, achieving the simultaneous determination of two or more analytes in situ, in a single measurement, and in real time, using only one working 'real sensor', remains one of the most daunting challenges, primarily due to the complexity of the sample matrix. To address these requirements, different approaches have been explored. The state of the art on food safety sensors will be summarized in this review including optical, electrochemical, and other sensor-based detection methods such as magnetoelastic or mass-based sensors.


Assuntos
Contaminação de Alimentos , Inocuidade dos Alimentos , Animais , Contaminação de Alimentos/análise , Leite/química
7.
Anal Chem ; 95(27): 10430-10437, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37367956

RESUMO

Herein, we introduce the first relative single-particle inductively coupled plasma mass spectrometry (spICP-MS) approach where size calibration is carried out using the target NP itself measured under different instrumental conditions without external dependence on the complex and prone-to-error determination of transport efficiency or mass flux calibrations, in contrast to most spICP-MS approaches. The simple approach proposed allows determining gold nanoparticle (AuNP) sizes, with errors ranging from 0.3 to 3.1% (corroborated by HR-TEM). It has been demonstrated that the changes observed in the single-particle histograms obtained for a suspension of AuNPs under different sensitivity conditions (n = 5) are directly and exclusively related to the mass (size) of the target AuNP itself. Interestingly, the relative nature of the approach shows that once the ICP-MS system has been calibrated with a generic NP standard, it is no longer necessary to repeat the calibration for the size determination of different unimetallic NPs carried out along time (at least 8 months), independently of their size (16-73 nm) and even nature (AuNP or AgNP). Additionally, neither the NP surface functionalization with biomolecules nor protein corona formation led to significant changes (relative errors slightly increased 1.3- to 1.5-fold, up to 7%) in the NP size determination, in contrast to conventional spICP-MS approaches where relative errors increased 2- to 8-fold, up to 32%. This feature could be especially valuable for the analysis of NPs in real samples without the need of matrix-matched calibration.

8.
Chemistry ; 29(44): e202300982, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37217457

RESUMO

Glycoside hydrolases (GHs) are a class of enzymes with emerging roles in a range of disease. Selective GH inhibitors are sought to better understand their functions and assess the therapeutic potential of modulating their activities. Iminosugars are a promising class of GH inhibitors but typically lack the selectivity required to accurately perturb biological systems. Here, we describe a concise synthesis of iminosugar inhibitors of N-acetyl-α-galactosaminidase (α-NAGAL), the GH responsible for cleaving terminal α-N-acetylgalactosamine residues from glycoproteins and other glycoconjugates. Starting from non-carbohydrate precursors, this modular synthesis supported the identification of a potent (490 nM) and α-NAGAL selective (∼200-fold) guanidino-containing derivative DGJNGuan. To illustrate the cellular activity of this new inhibitor, we developed a quantitative fluorescence image-based method to measure levels of the Tn-antigen, a cellular glycoprotein substrate of α-NAGAL. Using this assay, we show that DGJNGuan exhibits excellent inhibition of α-NAGAL within cells using patient derived fibroblasts (EC50 =150 nM). Moreover, in vitro and in cell assays to assess levels of lysosomal ß-hexosaminidase substrate ganglioside GM2 show that DGJNGuan is selective whereas DGJNAc exhibits off-target inhibition both in vitro and within cells. DGJNGuan is a readily produced and selective tool compound that should prove useful for investigating the physiological roles of α-NAGAL.


Assuntos
Hexosaminidases , beta-N-Acetil-Hexosaminidases , Humanos , alfa-N-Acetilgalactosaminidase/química , Lisossomos , Glicoconjugados , Glicoproteínas
9.
J Org Chem ; 88(13): 8674-8689, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37341522

RESUMO

ß-cyclodextrin (ßCyD) derivatives equipped with aromatic appendages at the secondary face exhibit tailorable self-assembling capabilities. The aromatic modules can participate in inclusion phenomena and/or aromatic-aromatic interactions. Supramolecular species can thus form that, at their turn, can engage in further co-assembling with third components in a highly regulated manner; the design of nonviral gene delivery systems is an illustrative example. Endowing such systems with stimuli responsiveness while keeping diastereomeric purity and a low synthetic effort is a highly wanted advancement. Here, we show that an azobenzene moiety can be "clicked" to a single secondary O-2 position of ßCyD affording 1,2,3-triazole-linked ßCyD-azobenzene derivatives that undergo reversible light-controlled self-organization into dimers where the monomer components face their secondary rims. Their photoswitching and supramolecular properties have been thoroughly characterized by UV-vis absorption, induced circular dichroism, nuclear magnetic resonance, and computational techniques. As model processes, the formation of inclusion complexes between a water-soluble triazolylazobenzene derivative and ßCyD as well as the assembly of native ßCyD/ßCyD-azobenzene derivative heterodimers have been investigated in parallel. The stability of the host-guest supramolecules has been challenged against the competitor guest adamantylamine and the decrease of the medium polarity using methanol-water mixtures. The collective data support that the E-configured ßCyD-azobenzene derivatives, in aqueous solution, form dimers stabilized by the interplay of aromatic-aromatic and aromatic-ßCyD cavity interactions after partial reciprocal inclusion. Photoswitching to the Z-isomer disrupts the dimers into monomeric species, offering opportunity for the spatiotemporal control of the organizational status by light.


Assuntos
beta-Ciclodextrinas , Dimerização , Compostos Azo , Polímeros , Água
10.
Sensors (Basel) ; 23(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36772764

RESUMO

Adulterations of olive oil are performed by adding seed oils to this high-quality product, which are cheaper than olive oils. Food safety controls have been established by the European Union to avoid these episodes. Most of these methodologies require expensive equipment, time-consuming procedures, and expert personnel to execute. Near-infrared spectroscopy (NIRS) technology has many applications in the food processing industry. It analyzes food safety and quality parameters along the food chain. Using principal component analysis (PCA), the differences and similarities between olive oil and seed oils (sesame, sunflower, and flax oil) have been evaluated. To quantify the percentage of adulterated seed oil in olive oils, partial least squares (PLS) have been employed. A total of 96 samples of olive oil adulterated with seed oils were prepared. These samples were used to build a spectra library covering various mixtures containing seed oils and olive oil contents. Eighteen chemometric models were developed by combining the first and second derivatives with Standard Normal Variable (SNV) for scatter correction to classify and quantify seed oil adulteration and percentage. The results obtained for all seed oils show excellent coefficients of determination for calibration higher than 0.80. Because the instrumental aspects are not generally sufficiently addressed in the articles, we include a specific section on some key aspects of developing a high-performance and cost-effective NIR spectroscopy solution for fraud detection in olive oil. First, spectroscopy architectures are introduced, especially the Texas Instruments Digital Light Processing (DLP) technology for spectroscopy that has been used in this work. These results demonstrate that the portable prototype can be used as an effective tool to detect food fraud in liquid samples.


Assuntos
Óleos de Plantas , Espectroscopia de Luz Próxima ao Infravermelho , Azeite de Oliva/análise , Óleos de Plantas/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Contaminação de Alimentos/análise , Fraude/prevenção & controle , Óleo de Girassol
11.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36674792

RESUMO

Alzheimer's disease (AD) is known to be caused by amyloid ß-peptide (Aß) misfolded into ß-sheets, but this knowledge has not yet led to treatments to prevent AD. To identify novel molecular players in Aß toxicity, we carried out a genome-wide screen in Saccharomyces cerevisiae, using a library of 5154 gene knock-out strains expressing Aß1-42. We identified 81 mammalian orthologue genes that enhance Aß1-42 toxicity, while 157 were protective. Next, we performed interactome and text-mining studies to increase the number of genes and to identify the main cellular functions affected by Aß oligomers (oAß). We found that the most affected cellular functions were calcium regulation, protein translation and mitochondrial activity. We focused on SURF4, a protein that regulates the store-operated calcium channel (SOCE). An in vitro analysis using human neuroblastoma cells showed that SURF4 silencing induced higher intracellular calcium levels, while its overexpression decreased calcium entry. Furthermore, SURF4 silencing produced a significant reduction in cell death when cells were challenged with oAß1-42, whereas SURF4 overexpression induced Aß1-42 cytotoxicity. In summary, we identified new enhancer and protective activities for Aß toxicity and showed that SURF4 contributes to oAß1-42 neurotoxicity by decreasing SOCE activity.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Humanos , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/química , Cálcio/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Morte Celular , Canais de Cálcio/genética , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/toxicidade , Fragmentos de Peptídeos/metabolismo , Mamíferos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
12.
Hum Mutat ; 43(6): 717-733, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35178824

RESUMO

Rare disease patients are more likely to receive a rapid molecular diagnosis nowadays thanks to the wide adoption of next-generation sequencing. However, many cases remain undiagnosed even after exome or genome analysis, because the methods used missed the molecular cause in a known gene, or a novel causative gene could not be identified and/or confirmed. To address these challenges, the RD-Connect Genome-Phenome Analysis Platform (GPAP) facilitates the collation, discovery, sharing, and analysis of standardized genome-phenome data within a collaborative environment. Authorized clinicians and researchers submit pseudonymised phenotypic profiles encoded using the Human Phenotype Ontology, and raw genomic data which is processed through a standardized pipeline. After an optional embargo period, the data are shared with other platform users, with the objective that similar cases in the system and queries from peers may help diagnose the case. Additionally, the platform enables bidirectional discovery of similar cases in other databases from the Matchmaker Exchange network. To facilitate genome-phenome analysis and interpretation by clinical researchers, the RD-Connect GPAP provides a powerful user-friendly interface and leverages tens of information sources. As a result, the resource has already helped diagnose hundreds of rare disease patients and discover new disease causing genes.


Assuntos
Genômica , Doenças Raras , Exoma , Estudos de Associação Genética , Genômica/métodos , Humanos , Fenótipo , Doenças Raras/diagnóstico , Doenças Raras/genética
13.
J Am Chem Soc ; 144(2): 832-844, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34985906

RESUMO

Owing to its roles in human health and disease, the modification of nuclear, cytoplasmic, and mitochondrial proteins with O-linked N-acetylglucosamine residues (O-GlcNAc) has emerged as a topic of great interest. Despite the presence of O-GlcNAc on hundreds of proteins within cells, only two enzymes regulate this modification. One of these enzymes is O-GlcNAcase (OGA), a dimeric glycoside hydrolase that has a deep active site cleft in which diverse substrates are accommodated. Chemical tools to control OGA are emerging as essential resources for helping to decode the biochemical and cellular functions of the O-GlcNAc pathway. Here we describe rationally designed bicyclic thiazolidine inhibitors that exhibit superb selectivity and picomolar inhibition of human OGA. Structures of these inhibitors in complex with human OGA reveal the basis for their exceptional potency and show that they extend out of the enzyme active site cleft. Leveraging this structure, we create a high affinity chemoproteomic probe that enables simple one-step purification of endogenous OGA from brain and targeted proteomic mapping of its post-translational modifications. These data uncover a range of new modifications, including some that are less-known, such as O-ubiquitination and N-formylation. We expect that these inhibitors and chemoproteomics probes will prove useful as fundamental tools to decipher the mechanisms by which OGA is regulated and directed to its diverse cellular substrates. Moreover, the inhibitors and structures described here lay out a blueprint that will enable the creation of chemical probes and tools to interrogate OGA and other carbohydrate active enzymes.


Assuntos
Antígenos de Neoplasias/metabolismo , Compostos Bicíclicos com Pontes/química , Inibidores Enzimáticos/química , Histona Acetiltransferases/metabolismo , Hialuronoglucosaminidase/metabolismo , Sequência de Aminoácidos , Encéfalo/metabolismo , Compostos Bicíclicos com Pontes/metabolismo , Domínio Catalítico , Cromatografia Líquida de Alta Pressão , Inibidores Enzimáticos/metabolismo , Histona Acetiltransferases/antagonistas & inibidores , Humanos , Hialuronoglucosaminidase/antagonistas & inibidores , Espectrometria de Massas , Peptídeos/análise , Peptídeos/química , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Relação Estrutura-Atividade , Tiazolidinas/química , Tiazolidinas/metabolismo , Cadeia alfa da beta-Hexosaminidase/antagonistas & inibidores , Cadeia alfa da beta-Hexosaminidase/metabolismo
14.
Anal Bioanal Chem ; 414(18): 5201-5215, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35292825

RESUMO

Nucleic acid enzymes (NAzymes) are a class of nucleic acid molecules with catalytic activity, which can be modulated by the presence of different species such as metal ions, genetic biomarkers, small molecules or proteins, among others. NAzymes offer several important advantages for development of novel bioanalytical strategies, resulting from their functionality as specific recognition elements and as amplified analytical signal generators, making them ideal candidates for developing highly specific bioanalytical strategies for the detection of a wide variety of targets. When coupled with the exceptional features of inorganic nanoparticles (NPs), the sensitivity of the assays can be significantly improved, allowing the detection of targets using many different detection techniques including visual readout, spectrophotometry, fluorimetry, electrochemiluminescence, voltammetry, and single-particle inductively coupled plasma-mass spectrometry. Here we provide an overview of the fundamentals of novel strategies developed to achieve analytical signal amplification based on the use of NAzymes coupled with inorganic NPs. Some representative examples of such strategies for the highly sensitive detection of different targets will be presented, including metal ions, proteins, DNA- or RNA-based biomarkers, and small molecules or microorganisms. Furthermore, future prospective challenges will be discussed.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Ácidos Nucleicos , Biomarcadores , Técnicas Biossensoriais/métodos , DNA/química , Metais/química , Nanopartículas/química , Técnicas de Amplificação de Ácido Nucleico , Proteínas
15.
Anal Bioanal Chem ; 414(1): 53-62, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33674934

RESUMO

The current trends in modern medicine towards early diagnosis, or even prognosis, of different diseases have brought about the need for the corresponding biomarker detection at ever lower levels in really complex matrices. To do so, it is necessary to use proper extremely sensitive detection techniques such as elemental mass spectrometry. However, target labelling with metals for subsequent sensitive ICP-MS detection falls short nowadays even if resorting to inorganic nanoparticles containing a high number of detectable elements. Thus, new amplification strategies are being proposed to face this analytical challenge that will be critically discussed in this paper. Fundamentals of different novel strategies developed to achieve signal amplification and sensitive elemental mass spectrometry detection are here discussed. Some representative examples of relevant clinical applications are highlighted, along with future prospects and challenges.


Assuntos
Biomarcadores/química , Espectrometria de Massas/métodos , Nanopartículas Metálicas/química , Células Hep G2 , Humanos , Sensibilidade e Especificidade
16.
Macromol Rapid Commun ; 43(11): e2200145, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35426201

RESUMO

A robust strategy is reported to build perfectly monodisperse star polycations combining a trehalose-based cyclooligosaccharide (cyclotrehalan, CT) central core onto which oligoethyleneimine radial arms are installed. The architectural perfection of the compounds is demonstrated by a variety of physicochemical techniques, including NMR, MS, DLS, TEM, and GPC. Key to the strategy is the possibility of customizing the cavity size of the macrocyclic platform to enable/prevent the inclusion of adamantane motifs. These properties can be taken into advantage to implement sequential levels of stimuli responsiveness by combining computational design, precision chemistry and programmed host-guest interactions. Specifically, it is shown that supramolecular dimers implying a trimeric CT-tetraethyleneimine star polycation and purposely designed bis-adamantane guests are preorganized to efficiently complex plasmid DNA (pDNA) into transfection-competent nanocomplexes. The stability of the dimer species is responsive to the protonation state of the cationic clusters, resulting in dissociation at acidic pH. This process facilitates endosomal escape, but reassembling can take place in the cytosol then handicapping pDNA nuclear import. By equipping the ditopic guest with a redox-sensitive disulfide group, recapturing phenomena are prevented, resulting in drastically improved transfection efficiencies both in vivo and in vitro.


Assuntos
Adamantano , Polímeros , Dimerização , Concentração de Íons de Hidrogênio , Oxirredução , Polieletrólitos , Polímeros/química
17.
Nucleic Acids Res ; 48(W1): W538-W545, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32374845

RESUMO

The identification of orthologs-genes in different species which descended from the same gene in their last common ancestor-is a prerequisite for many analyses in comparative genomics and molecular evolution. Numerous algorithms and resources have been conceived to address this problem, but benchmarking and interpreting them is fraught with difficulties (need to compare them on a common input dataset, absence of ground truth, computational cost of calling orthologs). To address this, the Quest for Orthologs consortium maintains a reference set of proteomes and provides a web server for continuous orthology benchmarking (http://orthology.benchmarkservice.org). Furthermore, consensus ortholog calls derived from public benchmark submissions are provided on the Alliance of Genome Resources website, the joint portal of NIH-funded model organism databases.


Assuntos
Família Multigênica , Proteoma , Software , Animais , Benchmarking , Consenso , Genômica , Humanos , Camundongos , Filogenia , Ratos
18.
J Enzyme Inhib Med Chem ; 37(1): 1364-1374, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35575117

RESUMO

The late-onset form of Tay-Sachs disease displays when the activity levels of human ß-hexosaminidase A (HexA) fall below 10% of normal, due to mutations that destabilise the native folded form of the enzyme and impair its trafficking to the lysosome. Competitive inhibitors of HexA can rescue disease-causative mutant HexA, bearing potential as pharmacological chaperones, but often also inhibit the enzyme O-glucosaminidase (GlcNAcase; OGA), a serious drawback for translation into the clinic. We have designed sp2-iminosugar glycomimetics related to GalNAc that feature a neutral piperidine-derived thiourea or a basic piperidine-thiazolidine bicyclic core and behave as selective nanomolar competitive inhibitors of human Hex A at pH 7 with a ten-fold lower inhibitory potency at pH 5, a good indication for pharmacological chaperoning. They increased the levels of lysosomal HexA activity in Tay-Sachs patient fibroblasts having the G269S mutation, the highest prevalent in late-onset Tay-Sachs disease.


Assuntos
Doença de Tay-Sachs , Hexosaminidase A/genética , Humanos , Lisossomos , Piperidinas , Doença de Tay-Sachs/tratamento farmacológico , Doença de Tay-Sachs/genética , beta-N-Acetil-Hexosaminidases
19.
Sensors (Basel) ; 22(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35214214

RESUMO

Breast milk is an optimal food that covers all the nutritional needs of the newborn. It is a dynamic fluid whose composition varies with lactation period. The neonatal units of hospitals have human milk banks, a service that analyzes, stores, and distributes donated human milk. This milk is used to feed premature infants (born before 32 weeks of gestation or weighing less than 1500 g) whose mothers, for some reason, cannot feed them with their own milk. Here, we aimed to develop near-infrared spectroscopy (NIRS) measures for the analysis of breast milk. For this purpose, we used a portable NIRS instrument scanning in the range of 1396-2396 nm to collect the spectra of milk samples. Then, different chemometrics were calculated to develop 18 calibration models with and without using derivatives and the standard normal variate. Once the calibration models were developed, the best treatments were selected according to the correlation coefficients (r2) and prediction errors (SECVs). The best results for the assayed macronutrients were obtained when no pre-treatment was applied to the NIR spectra of fat (r2 = 0.841, SECV = 0.51), raw protein (r2 = 0.512, SECV = 0.21), and carbohydrates (r2 = 0.741, SECV = 1.35). SNV plus the first derivative was applied to obtain satisfactory results for energy (r2 = 0.830, SECV = 9.60) quantification. The interpretation of the obtained results showed the richness of the NIRS spectra; moreover, the presence of specific bands for fat provided excellent statistics in quantitative models. These results demonstrated the ability of portable NIRS sensors in a methodology developed for the quality control of macronutrients in breast milk.


Assuntos
Lactação , Leite Humano , Calibragem , Feminino , Humanos , Recém-Nascido , Nutrientes , Espectroscopia de Luz Próxima ao Infravermelho/métodos
20.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955585

RESUMO

Inflammatory processes play a central role in the pathogenesis of diabetic nephropathy (DN) in the early stages of the disease. The authors demonstrate that the glycolipid mimetic (Ss)-DS-ONJ is able to abolish inflammation via the induction of autophagy flux and provokes the inhibition of inflammasome complex in ex vivo and in vitro models, using adult kidney explants from BB rats. The contribution of (Ss)-DS-ONJ to reducing inflammatory events is mediated by the inhibition of classical stress kinase pathways and the blocking of inflammasome complex activation. The (Ss)-DS-ONJ treatment is able to inhibit the epithelial-to-mesenchymal transition (EMT) progression, but only when the IL18 levels are reduced by the treatment. These findings suggest that (Ss)-DS-ONJ could be a novel, and multifactorial treatment for DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Animais , Autofagia , Nefropatias Diabéticas/metabolismo , Transição Epitelial-Mesenquimal , Inflamassomos , Rim/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa