Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(27): 12641-12650, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38920333

RESUMO

Metal halide perovskites with a two-dimensional structure are utilized in photovoltaics and optoelectronics. High-crystallinity CsSn2Br5 specimens have been synthesized via ball milling. Differential scanning calorimetry curves show melting at 553 K (endothermic) and recrystallization at 516 K (exothermic). Structural analysis using synchrotron X-ray diffraction data, collected from 100 to 373 K, allows for the determination of Debye model parameters. This analysis provides insights into the relative Cs-Br and Sn-Br chemical bonds within the tetragonal structure (space group: I4/mcm), which remains stable throughout the temperature range studied. Combined with neutron data, X-N techniques permit the identification of the Sn2+ lone electron pair (5s2) in the two-dimensional framework, occupying empty space opposite to the four Sn-Br bonds of the pyramidal [SnBr4] coordination polyhedra. Additionally, diffuse reflectance UV-vis spectroscopy unveils an indirect optical gap of approximately ∼3.3 eV, aligning with the calculated value from the B3LYP-DFT method (∼3.2 eV). The material exhibits a positive Seebeck coefficient as high as 6.5 × 104 µV K-1 at 350 K, which evolves down to negative values of -3.0 × 103 µV K-1 at 550 K, surpassing values reported for other halide perovskites. Notably, the thermal conductivity remains exceptionally low, between 0.32 and 0.25 W m-1 K-1.

2.
Inorg Chem ; 60(18): 13990-14001, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34496217

RESUMO

This study presents the influence of polymorphism on the magnetic properties of Co5TeO8. This compound with a spinel-like structure [Co2]A[Co3Te]BO8 was synthesized into two polymorphs: one disordered within a cubic Fd3̅m structure, where Co2+ and Te6+ ions are randomly distributed on the octahedral B sites [the disordered polymorph can also be presented as an inverse spinel of the formula Co(Co1.5Te0.5)O4] and the other ordered with a cubic P4332 structure where Co2+ and Te6+ ions are ordered on the B sites. The macroscopic magnetic measurements showed that both polymorphs present a ferrimagnetic ordering, below ∼40 K, and a second transition is also observed at 27 K for the ordered polymorph. Neutron powder diffraction data between room temperature and 1.7 K showed as well the presence of short-range magnetic ordered clusters, which appears for both polymorphs below 200 K. At lower temperature, these short-range orders are transformed into long-range ferrimagnetic orders. Below TC = 40 K, the colinear ferrimagnetic structure of the disordered polymorph is described with the I41/am'd' space group. The ordered polymorph undergoes an incommensurate ferrimagnetic spiral spin ordering below TC1 = 45 K, followed by a second magnetic phase transition at TC2 = 27 K. This last transition is associated with the emergence of an additional ferrimagnetic component and an abrupt change in the magnitude of the magnetic propagation vector k = [0, 0, γ] from γ = 0.086 at T = 30 K to γ ≈ 0.14 in the range between 27 and 1.7 K. The magnetic symmetry of the ordered polymorph is described with the P43(00γ)0 magnetic superspace group. We evidenced that the ordering of Co2+/Te6+ on the B sites changes all of the Co-Co and Co-O distances and thus all JAB, JAA, and JBB exchange interactions, between the A and B sites, which are able to stabilize the incommensurate spin modulation in the ordered polymorph.

3.
Inorg Chem ; 59(20): 14932-14943, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33006896

RESUMO

Black phosphorus (BP) allotrope has an orthorhombic crystal structure with a narrow bandgap of 0.35 eV. This material is promising for 2D technology since it can be exfoliated down to one single layer: the well-known phosphorene. In this work, bulk BP was synthesized under high-pressure conditions at high temperatures. A detailed structural investigation using neutron and synchrotron X-ray diffraction revealed the occurrence of anisotropic strain effects on the BP lattice; the combination of both sets of diffraction data allowed visualization of the lone electron pair 3s2. Temperature-dependent neutron diffraction data collected at low temperature showed that the a axis (zigzag) exhibits a quasi-temperature-independent thermal expansion in the temperature interval from 20 up to 150 K. These results may be a key to address the anomalous behavior in electrical resistivity near 150 K. Thermoelectric properties were also provided; low thermal conductivity from 14 down to 6 Wm-1K-1 in the range 323-673 K was recorded in our polycrystalline BP, which is below the reported values for single-crystals in literature.

4.
Chemistry ; 25(17): 4496-4500, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30720928

RESUMO

The hybrid methylammonium (MA) lead halide MAPbX3 perovskites present an appealing optoelectronic behavior with applications in high-efficiency solar cells. The orientation of the organic MA units may play an important role in the properties, given the degrees of freedom for internal motion of MA groups within the PbX6 network. The present neutron powder diffraction study reveals the dynamic features of the MA units in the hybrid perovskite series MAPb(Br1-x Clx )3 , with x=0, 0.33, 0.5, 0.67, and 1. From difference Fourier maps, the H and C/N positions were located within the PbX6 lattice; the refinement of the crystal structures unveiled the MA conformations. Three different orientations were found to exist as a function of the chlorine content (x) and, therefore, of the cubic unit-cell size. These conformations are stabilized by H-bond interactions with the halide ions, and were found to agree with those reported from theoretical calculations.

5.
Inorg Chem ; 57(4): 1787-1795, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29393644

RESUMO

This contribution addresses standing questions about the nature and consequences of the ion self-assembly and magnetic structures, as well as the molecular motion of the crystalline structure as a function of the temperature, in halometalate materials based on imidazolium cation. We present the magnetic structure and magnetostructural correlations of 1-ethyl-2,3-dimethylimidazolium tetrachloridoferrate, (Edimim)[FeCl4], resolved by neutron diffraction studies. Single-crystal, synchrotron powder X-ray diffraction and powder neutron diffraction techniques have been combined to follow the temperature evolution on its crystallographic structure from 2 K close to its melting point (340 K). In this sense, slightly above room temperature (307 K) (Edimim)[FeCl4] presents a single-crystal to single-crystal transition (SCSC), from phase I (space group P21/n) to phase II (P21/m), accompanied by a notable increase in the disorder of the imidazolium cation, as well as in the metal complex anion. The temperature evolution and solid-phase transitions of the presented compound were followed in detail by synchrotron X-ray powder diffraction (SXPD), which confirms the occurrence of another phase transition at 330 K, phase III (P21/m), the crystal structure of which was elucidated from the SXPD pattern. Moreover, this material presents an anisotropic thermal expansion with a switch from axial positive to negative thermal expansion coefficients as the temperature is raised above the first phase transition, which has been correlated with the molecular motion of the imidazolium-based molecules, producing not only a shortening of the counterion···counterion distances but also the occurrence of different quasi-isoenergetic crystal structures as a function of the temperature.

6.
Inorg Chem ; 56(8): 4271-4279, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28345884

RESUMO

From stoichiometric amounts of CaO, Fe, and Se, pure powders and single crystals of quaternary [Formula: see text] can be obtained by solid-state reaction and self-flux growth, respectively. The as-synthesized compound exhibits a polymorphic crystal structure, where the two modifications have different stacking sequences of [Formula: see text] layers. The two polymorphs have similar unit cells but different crystal symmetries (Cmc21 and Pnma), of which the former is non-centrosymmetric. Fe is divalent (d6) and high-spin, as proven by X-ray spectroscopy, Mössbauer spectroscopy, and powder neutron diffraction data. The latter two, in combination with magnetic susceptibility and specific heat data, reveal a long-range antiferromagnetic spin order (TN = 160 K) with a minor spin canting. CaFeSeO is an electronic insulator, as confirmed by resistivity measurements and density functional theory calculations. The latter also suggest a relatively small energy difference between the two polymorphs, explaining their intimate intergrowth.

7.
Inorg Chem ; 55(6): 3091-7, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26958863

RESUMO

Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) outperforms as a cathode in solid-oxide fuel cells (SOFC), at temperatures as low as 700-750 °C. The microscopical reason for this performance was investigated by temperature-dependent neutron powder diffraction (NPD) experiments. In the temperature range of 25-800 °C, Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) shows a perfectly cubic structure (a = a0), with a significant oxygen deficiency in a single oxygen site, that substantially increases at the working temperatures of a SOFC. The anisotropic thermal motion of oxygen atoms considerably rises with T, reaching B(eq) ≈ 5 Å(2) at 800 °C, with prolate cigar-shaped, anisotropic vibration ellipsoids that suggest a dynamic breathing of the octahedra as oxygen ions diffuse across the structure by a vacancies mechanism, thus implying a significant ionic mobility that could be described as a molten oxygen sublattice. The test cell with a La(0.8)Sr(0.2)Ga(0.83)Mg(0.17)O(3-δ) electrolyte (∼300 µm in thickness)-supported configuration yields a peak power density of 0.20 and 0.40 W cm(-2) at temperatures of 700 and 750 °C, respectively, with pure H2 as fuel and ambient air as oxidant. The electrochemical impedance spectra (EIS) evolution with time of the symmetric cathode fuel cell measured at 750 °C shows that the Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) cathode possesses a superior ORR catalytic activity and long-term stability. The mixed electronic-ionic conduction properties of Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) account for its good performance as an oxygen-reduction catalyst.

8.
Phys Chem Chem Phys ; 18(31): 21881-92, 2016 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-27439896

RESUMO

The results reported here represent the first direct experimental observations supporting the existence of a solid-to-solid phase transition induced by thermal treatment in magnetic ionic liquids (MILs). The phase transitions of the solid phases of 1,3-dimethylimidazolium tetrachloroferrate, DimimFeCl4, are closely related to its thermal history. Two series of solid-to-solid phase transitions can be described in this MIL: (i) from room temperature (RT) phase II [space group (s.g.) = P21] to phase I-a [s.g. = P212121] via thermal quenching or via fast cooling at T > 2 K min(-1); (ii) from phase I-a to phase I-b [s.g. = P21/c] when the temperature was kept above 180 K for several minutes. The latter involves a slow translational and reorientational dynamical process of both the imidazolium cation and the tetrachloroferrate anion and has been characterized using synchrotron and neutron powder diffraction and DFT (density functional theory) studies. The transition is also related to the modification of the super-exchange pathways of low-temperature phases which show a overall antiferromagnetic behavior. A combination of several experimental methods such as magnetometry, Mössbauer and muon spectroscopy together with polarized and non-polarized neutron powder diffraction has been used in order to characterize the different features observed in these phases.

9.
Inorg Chem ; 54(22): 10890-900, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26513539

RESUMO

R2NiMnO6 (R = Tb, Ho, Er, Tm) perovskites have been prepared by soft-chemistry techniques followed by high oxygen-pressure treatments; they have been investigated by X-ray diffraction, neutron powder diffraction (NPD), and magnetic measurements. In all cases the crystal structure is defined in the monoclinic P21/n space group, with an almost complete order between Ni(2+) and Mn(4+) cations in the octahedral perovskite sublattice. The low temperature NPD data and the macroscopic magnetic measurements indicate that all the compounds are ferrimagnetic, with a net magnetic moment different from zero and a distinct alignment of Ni and Mn spins depending on the nature of the rare-earth cation. The magnetic structures are different from the one previously reported for La2NiMnO6, with a ferromagnetic structure involving Mn(4+) and Ni(2+) moments. This spin alignment can be rationalized taking into account the Goodenough-Kanamori rules. The magnetic ordering temperature (TCM) decreases abruptly as the size of the rare earth decreases, since TCM is mainly influenced by the superexchange interaction between Ni(2+) and Mn(4+) (Ni(2+)-O-Mn(4+) angle) and this angle decreases with the rare-earth size. The rare-earth magnetic moments participate in the magnetic structures immediately below TCM.

10.
Chemistry ; 20(1): 72-6, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24327226

RESUMO

A new magnetic ionic liquid (MIL) with 3D antiferromagnetic ordering has been synthetized and characterized. The information obtained from magnetic characterization was supplemented by analysis of DFT calculations and the magneto-structural correlations. The result gives no evidence for direct iron-iron interactions, corroborating that the 3D magnetic ordering in MILs takes place via super-exchange coupling containing two diamagnetic atoms intermediaries.

11.
Inorg Chem ; 53(16): 8384-96, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25079377

RESUMO

We present the first magnetic phase of an ionic liquid with anion-π interactions, which displays a three-dimensional (3D) magnetic ordering below the Néel temperature, TN = 7.7 K. In this material, called Dimim[FeBr4], an exhaustive and systematic study involving structural and physical characterization (synchrotron X-ray, neutron powder diffraction, direct current and alternating current magnetic susceptibility, magnetization, heat capacity, Raman and Mössbauer measurements) as well as first-principles analysis (density functional theory (DFT) simulation) was performed. The crystal structure, solved by Patterson-function direct methods, reveals a monoclinic phase (P21 symmetry) at room temperature with a = 6.745(3) Å, b = 14.364(3) Å, c = 6.759(3) Å, and ß = 90.80(2)°. Its framework, projected along the b direction, is characterized by layers of cations [Dimim](+) and anions [FeBr4](-) that change the orientation from layer to layer, with Fe···Fe distances larger than 6.7 Å. Magnetization measurements show the presence of 3D antiferromagnetic ordering below TN with the existence of a noticeable magneto-crystalline anisotropy. From low-temperature neutron diffraction data, it can be observed that the existence of antiferromagnetic order is originated by the antiparallel ordering of ferromagnetic layers of [FeBr4](-) metal complex along the b direction. The magnetic unit cell is the same as the chemical one, and the magnetic moments are aligned along the c direction. The DFT calculations reflect the fact that the spin density of the iron ions spreads over the bromine atoms. In addition, the projected density of states (PDOS) of the imidazolium with the bromines of a [FeBr4](-) metal complex confirms the existence of the anion-π interaction. Magneto-structural correlations give no evidence for direct iron-iron interactions, corroborating that the 3D magnetic ordering takes place via superexchange coupling, the Fe-Br···Br-Fe interplane interaction being defined as the main exchange pathway.

12.
ACS Appl Mater Interfaces ; 16(14): 17474-17482, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38563237

RESUMO

A new anode material, Ru-SrMo0.9O3-δ, with a perovskite structure and segregated metallic Ru, has been tested in an intermediate-temperature solid oxide fuel cell (IT-SOFC) in an electrolyte-supported configuration giving substantial power densities as high as 840 mW/cm2 at 850 °C using pure H2 as fuel. This material has been prepared by the citrate method and structurally and microstructurally characterized at room temperature by different techniques such as X-ray diffraction (XRD), neutron powder diffraction (NPD), scanning electron microscopy (SEM), and scanning transmission electron microscopy (STEM). NPD was very useful to determine oxygen positions and vacancies, unveiling a cubic and oxygen-deficient perovskite SrMo0.9O3-δ oxide with a Pm-3m space group and potential ionic mobility. On the other hand, SEM and STEM studies have allowed to identify metallic segregated Ru nanoparticles providing the material with an excellent catalytic activity. Other properties such as the thermal expansion coefficient (TEC) and chemical compatibility with other cell components or electrical conductivity have also been studied to understand the excellent performance of this material as anode in IT-SOFC and correlate it with the crystallographic structure.

13.
Nanomaterials (Basel) ; 13(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37513065

RESUMO

This article focuses on the Na2O-Ga2O3-TiO2 system, which is barely explored in the study of transparent conductive oxides (TCOs). NaxGa4+xTin-4-xO2n-2 (n = 5, 6, and 7 and x ≈ 0.7-0.8) materials were characterized using neutron powder diffraction and aberration-corrected scanning transmission electron microscopy. Activation energy, as a function of different structures depending on tunnel size, shows a significant improvement in Na+ ion conduction from hexagonal to octagonal tunnels. New insights into the relationship between the crystal structure and the transport properties of TCOs, which are crucial for the design and development of new optoelectronic devices, are provided.

14.
ACS Appl Mater Interfaces ; 15(34): 40762-40771, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37595125

RESUMO

Despite the great success of hybrid CH3NH3PbI3 perovskite in photovoltaics, ascribed to its excellent optical absorption properties, its instability toward moisture is still an insurmountable drawback. All-inorganic perovskites are much less sensitive to humidity and have potential interest for solar cell applications. Alternative strategies have been developed to design novel materials with appealing properties, which include different topologies for the octahedral arrangements from three-dimensional (3D, e.g., CsPbBr3 perovskite) or two-dimensional (2D, e.g., CsPb2Br5) to zero-dimensional (0D, i.e., without connection between octahedra), as the case of Cs4PbX6 (X = Br, I) halides. The crystal structure of these materials is complex, and their thermal evolution is unexplored. In this work, we describe the synthesis of Cs4PbBr6-xIx (x = 0, 2, 4, 6) halides by mechanochemical procedures with green credentials; these specimens display excellent crystallinity enabling a detailed structural investigation from synchrotron X-ray powder diffraction (SXRD) data, essential to revisit some features in the temperature range of 90-298 K. In all this regime, the structure is defined in the trigonal R3̅c space group (#167). The presence of Cs and X vacancies suggests some ionic mobility into the crystal structure of these 0D halides. Bond valence maps (BVMs) are useful in determining isovalent surfaces for both Cs4PbBr6 and Cs4PbI6 phases, unveiling the likely ionic pathways for cesium and bromide ions and showing a full 3D connection in the bromide phase, in contrast to the iodide one. On the other hand, the evolution of the anisotropic displacement parameters is useful to evaluate the Debye temperatures, confirming that Cs atoms have more freedom to move, while Pb is more confined at its site, likely due to a higher covalency degree in Pb-X bonds than that in Cs-X bonds. Diffuse reflectance ultraviolet-visible (UV-vis) spectroscopy shows that the optical band gap can be tuned depending on iodine content (x) in the range of 3.6-3.06 eV. From density functional theory (DFT) simulations, the general trend of reducing the band gap when Br is replaced by I is well reproduced.

15.
Materials (Basel) ; 15(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35683119

RESUMO

Two perovskite materials with SrMo1-xAlxO3-δ (x = 0.1, 0.2) compositions have been synthesized by reduction from the corresponding scheelite phases, with SrMo1-xAlxO4-δ stoichiometry; the pertinent characterization shows that the defective perovskites can be used as anode materials in solid oxide fuel cells, providing maximum output power densities of 633 mW/cm2 for x = 0.2. To correlate structure and properties, a neutron powder diffraction investigation was carried out for both perovskite and scheelite phases. Both perovskites are cubic, defined in the Pm-3m space group, displaying a random distribution of Mo and Al cations over the 1a sites of the structure. The introduction of Al at Mo positions produced conspicuous amounts of oxygen vacancies in the perovskite, detected by neutrons. This is essential to induce ionic diffusion, providing a mixed ionic and electronic conduction (MIEC), since in MIEC electrodes, charge carriers are combined in one single phase and the ionic conductivity can be one order of magnitude higher than in a conventional material. The thermal expansion coefficients of the reduced and oxidized samples demonstrated that these materials perfectly match with the La0.8Sr0.2Ga0.83Mg0.17O3-δ electrolyte, La0.4Ce0.6O2-δ buffer layer and other components of the cell. Scanning electron microscopy after the test in a real solid oxide fuel cell showed a very dense electrolyte and porous electrodes, essential requirements for this type of fuel. SrMo1-xAlxO3-δ perovskites are, thus, a good replacement of conventional biphasic cermet anodes in solid oxide fuel cells.

16.
Dalton Trans ; 51(6): 2278-2286, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35040857

RESUMO

The crystal structure of LuNiO3 perovskite has been examined below RT and across TN = 125 K by neutron powder diffraction. In this temperature region (2-298 K), well below the metal-insulator transition this oxide exhibits at TMI = 599 K, this material is insulating and characterized by a partial charge disproportionation of the Ni valence. In the perovskite structure, defined in the monoclinic P21/n space group, there are two inequivalent Ni sites located in alternating octahedra of different sizes. The structural analysis with high-resolution techniques (λ = 1.594 Å) unveils a subtle increase of the charge disproportionation as temperature decreases, reaching δeff = 0.34 at 2 K. The magnetic structure has been investigated from low-T NPD patterns collected with a larger wavelength (λ = 2.52 Å). Magnetic peaks are observed below TN; they can be indexed with a propagation vector k = (½, 0, ½), as previously observed in other RNiO3 perovskites for the Ni sublattice. Among the three possible solutions for the magnetic structure, the first one is discarded since it would correspond to a full charge ordering (Ni2+ + Ni4+), with magnetic moments only on Ni2+ ions, not compatible with the structural findings assessing a partial charge disproportionation. The best agreement is found for a non-collinear model with two different moments in Ni1 and Ni2 sites, 1.4(1) µB, and m 0.7(1) µB at 2 K, the ordered magnetic moments lying on the a-c plane. This is similar to that found for YNiO3. In complement, the magnetic and thermal properties of LuNiO3 have been investigated. AC susceptibility curves exhibit a clear peak centered at TN = 125 K, corresponding to the establishment of the Ni antiferromagnetic structure. This is corroborated by DC susceptibility and specific heat measurements. Magnetization vs. field measurements confirm that the system is antiferromagnetic down to 2 K, without any further magnetic change. This linear behavior is also observed in the paramagnetic regime (T > TN).

17.
RSC Adv ; 12(6): 3696-3707, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35425360

RESUMO

A novel oxynitride Li0.94FePO3.84N0.16 with olivine structure (space group Pnma, no. 62) has been synthesized by heating a parent LiFePO4 precursor obtained by citrate chemistry in flowing ammonia at 650 °C. The polycrystalline sample has been characterized by X-ray and neutron powder diffraction (NPD), elemental and thermal analysis, scanning electron microscopy (SEM) and electrochemical measurements. Based on the existing contrast between the scattering lengths of the N and O species, a Rietveld refinement of the structure from NPD data revealed that N preferentially occupies the O2 positions, as likely required to fulfil the bonding power of N ions. The refined crystallographic formula implies an oxidation state of 2.2+ for Fe cations. The differential thermal analysis, in still air, shows a strong exothermic peak at 520-540 °C due to the combustion of C contents, which are embedding the olivine particles, as observed by SEM. The electrochemical measurements suggest a better performance for the nitrided sample relative to the unnitrided LiFePO4 material, as far as capacity and cyclability are concerned. A bond-valence energy landscape study reveals a decrease in the percolation activation energy of about 6% upon nitridation, concomitant with the better electrochemical properties of the oxynitride compound. Additionally, ceramic samples prepared under NH3 flow could be obtained as pure and well-crystallized olivine phases at milder temperatures (650 °C) than those usually described in literature.

18.
Nanomaterials (Basel) ; 12(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36364685

RESUMO

AgSbTe2 intermetallic compound is a promising thermoelectric material. It has also been described as necessary to obtain LAST and TAGS alloys, some of the best performing thermoelectrics of the last decades. Due to the random location of Ag and Sb atoms in the crystal structure, the electronic structure is highly influenced by the atomic ordering of these atoms and makes the accurate determination of the Ag/Sb occupancy of paramount importance. We report on the synthesis of polycrystalline AgSbTe2 by arc-melting, yielding nanostructured dense pellets. SEM images show a conspicuous layered nanostructuration, with a layer thickness of 25-30 nm. Neutron powder diffraction data show that AgSbTe2 crystalizes in the cubic Pm-3m space group, with a slight deficiency of Te, probably due to volatilization during the arc-melting process. The transport properties show some anomalies at ~600 K, which can be related to the onset temperature for atomic ordering. The average thermoelectric figure of merit remains around ~0.6 from ~550 up to ~680 K.

19.
ACS Appl Mater Interfaces ; 13(36): 42927-42934, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34463469

RESUMO

The limit of the energy density and increasing security issues on sodium-ion batteries (SIBs) impede their further development. Solid-state sodium metal batteries are potential candidates to replace the present SIBs. However, low ionic conductivity and poor interface contact hinder their progress. In this work, the impact of Al doping on the crystalline structure and ionic transport in Na3.4Zr2(Si0.8P0.2O4)3 was studied by neutron powder diffraction. The ionic conductivity of Na3.5Zr1.9Al0.1Si2.4P0.6O12 achieves 4.43 × 10-3 S cm-1 at 50 °C. The polarization voltage of the Na||Na symmetric battery is about 40 mV after cycling for more than 1600 h. Moreover, a solid-state sodium-sulfur battery with a monolithic structure was constructed to alleviate the interfacial resistance problems. Its specific discharge capacity can still keep 300 mA h g-1 after 480 cycles at 300 mA g-1. The work provides a promising strategy to design solid-state sodium-sulfur batteries with high performances.

20.
ACS Catal ; 11(24): 15026-15039, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34976431

RESUMO

A family of iron-doped manganese-related hollandites, K x Mn1-y Fe y O2-δ (0 ≤ y ≤ 0.15), with high performance in CO oxidation have been prepared. Among them, the most active catalyst, K0.11Mn0.876Fe0.123O1.80(OH)0.09, is able to oxidize more than 50% of CO at room temperature. Detailed compositional and structural characterization studies, using a wide battery of thermogravimetric, spectroscopic, and diffractometric techniques, both at macroscopic and microscopic levels, have provided essential information about this never-reported behavior, which relates to the oxidation state of manganese. Neutron diffraction studies evidence that the above compound stabilizes hydroxyl groups at the midpoints of the tunnel edges as in isostructural ß-FeOOH. The presence of oxygen and hydroxyl species at the anion sublattice and Mn3+, confirmed by electron energy loss spectroscopy, appears to play a key role in the catalytic activity of this doped hollandite oxide. The analysis of these detailed structural features has allowed us to point out the key role of both OH groups and Mn3+ content in these materials, which are able to effectively transform CO without involving any critical, noble metal in the catalyst formulation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa