RESUMO
Rainfall-induced soil erosion is a major threat, especially in agricultural soils. In the Mediterranean belt, vineyards are affected by high soil loss rates, leading to land degradation. Plantation of new vines is carried out after deep ploughing, use of heavy machinery, wheel traffic, and trampling. Those works result in soil physical properties changes and contribute to enhanced runoff rates and increased soil erosion rates. The objective of this paper is to assess the impact of the plantation of vineyards on soil hydrological and erosional response under low frequency - high magnitude rainfall events, the ones that under the Mediterranean climatic conditions trigger extreme soil erosion rates. We determined time to ponding, Tp; time to runoff, Tr; time to runoff outlet, Tro; runoff rate, and soil loss under simulated rainfall (55 mm h-1, 1 h) at plot scale (0.25 m2) to characterize the runoff initiation and sediment detachment. In recent vine plantations (<1 year since plantation; R) compared to old ones (>50 years; O). Slope gradient, rock fragment cover, soil surface roughness, bulk density, soil organic matter content, soil water content and plant cover were determined. Plantation of new vineyards largely impacted runoff rates and soil erosion risk at plot scale in the short term. Tp, Tr and Tro were much shorter in R plots. Tr-Tp and Tro-Tr periods were used as connectivity indexes of water flow, and decreased to 77.5 and 33.2% in R plots compared to O plots. Runoff coefficients increased significantly from O (42.94%) to R plots (71.92%) and soil losses were approximately one order of magnitude lower (1.8 and 12.6 Mg ha-1 h-1 for O and R plots respectively). Soil surface roughness and bulk density are two key factors that determine the increase in connectivity of flows and sediments in recently planted vineyards. Our results confirm that plantation of new vineyards strongly contributes to runoff initiation and sediment detachment, and those findings confirms that soil erosion control strategies should be applied immediately after or during the plantation of vines.
Assuntos
Agricultura , Movimentos da Água , Fazendas , Chuva , Solo , VitisRESUMO
The aim of this study is to improve the estimation of the characteristic uncertainties of optic disdrometers in an attempt to calculate the efficient sampling area according to the size of the drop and to study how this influences the computation of other parameters, taking into account that the real sampling area is always smaller than the nominal area. For large raindrops (a little over 6 mm), the effective sampling area may be half the area indicated by the manufacturer. The error committed in the sampling area is propagated to all the variables depending on this surface, such as the rain intensity and the reflectivity factor. Both variables tend to underestimate the real value if the sampling area is not corrected. For example, the rainfall intensity errors may be up to 50% for large drops, those slightly larger than 6 mm. The same occurs with reflectivity values, which may be up to twice the reflectivity calculated using the uncorrected constant sampling area. The Z-R relationships appear to have little dependence on the sampling area, because both variables depend on it the same way. These results were obtained by studying one particular rain event that occurred on April 16, 2006.