Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nucleic Acids Res ; 51(10): e57, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37026484

RESUMO

Mosaic mutations can be used to track cell ancestries and reconstruct high-resolution lineage trees during cancer progression and during development, starting from the first cell divisions of the zygote. However, this approach requires sampling and analyzing the genomes of multiple cells, which can be redundant in lineage representation, limiting the scalability of the approach. We describe a strategy for cost- and time-efficient lineage reconstruction using clonal induced pluripotent stem cell lines from human skin fibroblasts. The approach leverages shallow sequencing coverage to assess the clonality of the lines, clusters redundant lines and sums their coverage to accurately discover mutations in the corresponding lineages. Only a fraction of lines needs to be sequenced to high coverage. We demonstrate the effectiveness of this approach for reconstructing lineage trees during development and in hematologic malignancies. We discuss and propose an optimal experimental design for reconstructing lineage trees.


Assuntos
Linhagem da Célula , Neoplasias , Software , Humanos , Células Germinativas , Mutação , Neoplasias/patologia
2.
Compr Psychiatry ; 133: 152506, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38833896

RESUMO

BACKGROUND: Trichotillomania (TTM) and excoriation disorder (ED) are impairing obsessive-compulsive related disorders that are common in the general population and for which there are no clear first-line medications, highlighting the need to better understand the underlying biology of these disorders to inform treatments. Given the importance of genetics in obsessive-compulsive disorder (OCD), evaluating genetic factors underlying TTM and ED may advance knowledge about the pathophysiology of these body-focused repetitive behaviors. AIM: In this systematic review, we summarize the available evidence on the genetics of TTM and ED and highlight gaps in the field warranting further research. METHOD: We systematically searched Embase, PsycInfo, PubMed, Medline, Scopus, and Web of Science for original studies in genetic epidemiology (family or twin studies) and molecular genetics (candidate gene and genome-wide) published up to June 2023. RESULTS: Of the 3536 records identified, 109 studies were included in this review. These studies indicated that genetic factors play an important role in the development of TTM and ED, some of which may be shared across the OCD spectrum, but there are no known high-confidence specific genetic risk factors for either TTM or ED. CONCLUSIONS: Our review underscores the need for additional genome-wide research conducted on the genetics of TTM and ED, for instance, genome-wide association and whole-genome/whole-exome DNA sequencing studies. Recent advances in genomics have led to the discovery of risk genes in several psychiatric disorders, including related conditions such as OCD, but to date, TTM and ED have remained understudied.


Assuntos
Transtorno de Escoriação , Transtorno Obsessivo-Compulsivo , Tricotilomania , Humanos , Transtorno de Escoriação/genética , Estudo de Associação Genômica Ampla , Transtorno Obsessivo-Compulsivo/genética , Tricotilomania/genética
3.
Mol Psychiatry ; 26(11): 6937-6951, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33837273

RESUMO

Tourette's Disorder (TD) is a neurodevelopmental disorder (NDD) that affects about 0.7% of the population and is one of the most heritable NDDs. Nevertheless, because of its polygenic nature and genetic heterogeneity, the genetic etiology of TD is not well understood. In this study, we combined the segregation information in 13 TD multiplex families with high-throughput sequencing and genotyping to identify genes associated with TD. Using whole-exome sequencing and genotyping array data, we identified both small and large genetic variants within the individuals. We then combined multiple types of evidence to prioritize candidate genes for TD, including variant segregation pattern, variant function prediction, candidate gene expression, protein-protein interaction network, candidate genes from previous studies, etc. From the 13 families, 71 strong candidate genes were identified, including both known genes for NDDs and novel genes, such as HtrA Serine Peptidase 3 (HTRA3), Cadherin-Related Family Member 1 (CDHR1), and Zinc Finger DHHC-Type Palmitoyltransferase 17 (ZDHHC17). The candidate genes are enriched in several Gene Ontology categories, such as dynein complex and synaptic membrane. Candidate genes and pathways identified in this study provide biological insight into TD etiology and potential targets for future studies.


Assuntos
Síndrome de Tourette , Proteínas Relacionadas a Caderinas , Família , Predisposição Genética para Doença/genética , Humanos , Proteínas do Tecido Nervoso/genética , Linhagem , Serina Endopeptidases , Síndrome de Tourette/genética , Sequenciamento do Exoma
4.
Depress Anxiety ; 39(6): 474-484, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35312124

RESUMO

BACKGROUND: Genetic factors contribute to the development of anxiety disorders, yet few risk genes have been previously identified. One genomic approach that has achieved success in identifying risk genes in related childhood neuropsychiatric conditions is investigations of de novo variants, which has yet to be leveraged in childhood anxiety disorders. METHODS: We performed whole-exome DNA sequencing in 76 parent-child trios (68 trios after quality control) recruited from a childhood anxiety disorder clinic and compared rates of rare and ultra-rare de novo variants with 790 previously sequenced control trios (783 trios after quality control). We then explored overlap with risk genes for other neuropsychiatric conditions and enrichment in biologic pathways. RESULTS: Rare and ultra-rare de novo likely gene disrupting and predicted damaging missense genetic variants are enriched in anxiety disorder probands compared with controls (rare variant rate ratio 1.97, 95% confidence interval [CI]: 1.11-3.34, p = .03; ultra-rare variant rate ratio 2.59, 95% CI: 1.35-4.70, p = .008). These de novo damaging variants occur in individuals with a variety of childhood anxiety disorders and impact genes that have been associated with other neuropsychiatric conditions. Exploratory network analyses reveal enrichment of deleterious variants in canonical biological pathways. CONCLUSIONS: These findings provide a path for identifying risk genes and promising biologic pathways in childhood anxiety disorders by de novo genetic variant detection. Our results suggest the discovery potential of applying this approach in larger anxiety disorder cohorts to advance our understanding of the underlying biology of these common and debilitating conditions.


Assuntos
Produtos Biológicos , Exoma , Transtornos de Ansiedade/genética , Exoma/genética , Predisposição Genética para Doença/genética , Humanos , Análise de Sequência de DNA
5.
J Neural Transm (Vienna) ; 128(11): 1757-1765, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34389898

RESUMO

Tourette syndrome (TS) is a neuropsychiatric disorder with involvement of genetic and environmental factors. We investigated genetic loci previously implicated in Tourette syndrome and associated disorders in interaction with pre- and perinatal adversity in relation to tic severity using a case-only (N = 518) design. We assessed 98 single-nucleotide polymorphisms (SNPs) selected from (I) top SNPs from genome-wide association studies (GWASs) of TS; (II) top SNPs from GWASs of obsessive-compulsive disorder (OCD), attention-deficit/hyperactivity disorder (ADHD), and autism spectrum disorder (ASD); (III) SNPs previously implicated in candidate-gene studies of TS; (IV) SNPs previously implicated in OCD or ASD; and (V) tagging SNPs in neurotransmitter-related candidate genes. Linear regression models were used to examine the main effects of the SNPs on tic severity, and the interaction effect of these SNPs with a cumulative pre- and perinatal adversity score. Replication was sought for SNPs that met the threshold of significance (after correcting for multiple testing) in a replication sample (N = 678). One SNP (rs7123010), previously implicated in a TS meta-analysis, was significantly related to higher tic severity. We found a gene-environment interaction for rs6539267, another top TS GWAS SNP. These findings were not independently replicated. Our study highlights the future potential of TS GWAS top hits in gene-environment studies.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Tiques , Síndrome de Tourette , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Espectro Autista/genética , Feminino , Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Humanos , Gravidez , Índice de Gravidade de Doença
6.
Eur Arch Psychiatry Clin Neurosci ; 268(3): 301-316, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28555406

RESUMO

Genetic studies in Tourette syndrome (TS) are characterized by scattered and poorly replicated findings. We aimed to replicate findings from candidate gene and genome-wide association studies (GWAS). Our cohort included 465 probands with chronic tic disorder (93% TS) and both parents from 412 families (some probands were siblings). We assessed 75 single nucleotide polymorphisms (SNPs) in 465 parent-child trios; 117 additional SNPs in 211 trios; and 4 additional SNPs in 254 trios. We performed SNP and gene-based transmission disequilibrium tests and compared nominally significant SNP results with those from a large independent case-control cohort. After quality control 71 SNPs were available in 371 trios; 112 SNPs in 179 trios; and 3 SNPs in 192 trios. 17 were candidate SNPs implicated in TS and 2 were implicated in obsessive-compulsive disorder (OCD) or autism spectrum disorder (ASD); 142 were tagging SNPs from eight monoamine neurotransmitter-related genes (including dopamine and serotonin); 10 were top SNPs from TS GWAS; and 13 top SNPs from attention-deficit/hyperactivity disorder, OCD, or ASD GWAS. None of the SNPs or genes reached significance after adjustment for multiple testing. We observed nominal significance for the candidate SNPs rs3744161 (TBCD) and rs4565946 (TPH2) and for five tagging SNPs; none of these showed significance in the independent cohort. Also, SLC1A1 in our gene-based analysis and two TS GWAS SNPs showed nominal significance, rs11603305 (intergenic) and rs621942 (PICALM). We found no convincing support for previously implicated genetic polymorphisms. Targeted re-sequencing should fully appreciate the relevance of candidate genes.


Assuntos
Saúde da Família , Polimorfismo de Nucleotídeo Único/genética , Transtornos de Tique/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Desequilíbrio de Ligação , Masculino , Proteínas Associadas aos Microtúbulos/genética , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Triptofano Hidroxilase/genética , Adulto Jovem
7.
PLoS Genet ; 11(1): e1004852, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25621974

RESUMO

Contactins and Contactin-Associated Proteins, and Contactin-Associated Protein-Like 2 (CNTNAP2) in particular, have been widely cited as autism risk genes based on findings from homozygosity mapping, molecular cytogenetics, copy number variation analyses, and both common and rare single nucleotide association studies. However, data specifically with regard to the contribution of heterozygous single nucleotide variants (SNVs) have been inconsistent. In an effort to clarify the role of rare point mutations in CNTNAP2 and related gene families, we have conducted targeted next-generation sequencing and evaluated existing sequence data in cohorts totaling 2704 cases and 2747 controls. We find no evidence for statistically significant association of rare heterozygous mutations in any of the CNTN or CNTNAP genes, including CNTNAP2, placing marked limits on the scale of their plausible contribution to risk.


Assuntos
Transtorno Autístico/genética , Contactinas/genética , Estudos de Associação Genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Transtorno Autístico/patologia , Códon sem Sentido , Variações do Número de Cópias de DNA , Predisposição Genética para Doença , Humanos , Mutação Puntual , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Deleção de Sequência
9.
PLoS Genet ; 9(10): e1003864, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24204291

RESUMO

The direct estimation of heritability from genome-wide common variant data as implemented in the program Genome-wide Complex Trait Analysis (GCTA) has provided a means to quantify heritability attributable to all interrogated variants. We have quantified the variance in liability to disease explained by all SNPs for two phenotypically-related neurobehavioral disorders, obsessive-compulsive disorder (OCD) and Tourette Syndrome (TS), using GCTA. Our analysis yielded a heritability point estimate of 0.58 (se = 0.09, p = 5.64e-12) for TS, and 0.37 (se = 0.07, p = 1.5e-07) for OCD. In addition, we conducted multiple genomic partitioning analyses to identify genomic elements that concentrate this heritability. We examined genomic architectures of TS and OCD by chromosome, MAF bin, and functional annotations. In addition, we assessed heritability for early onset and adult onset OCD. Among other notable results, we found that SNPs with a minor allele frequency of less than 5% accounted for 21% of the TS heritability and 0% of the OCD heritability. Additionally, we identified a significant contribution to TS and OCD heritability by variants significantly associated with gene expression in two regions of the brain (parietal cortex and cerebellum) for which we had available expression quantitative trait loci (eQTLs). Finally we analyzed the genetic correlation between TS and OCD, revealing a genetic correlation of 0.41 (se = 0.15, p = 0.002). These results are very close to previous heritability estimates for TS and OCD based on twin and family studies, suggesting that very little, if any, heritability is truly missing (i.e., unassayed) from TS and OCD GWAS studies of common variation. The results also indicate that there is some genetic overlap between these two phenotypically-related neuropsychiatric disorders, but suggest that the two disorders have distinct genetic architectures.


Assuntos
Transtorno Obsessivo-Compulsivo/genética , Característica Quantitativa Herdável , Síndrome de Tourette/genética , Frequência do Gene , Estudo de Associação Genômica Ampla , Humanos , Transtorno Obsessivo-Compulsivo/patologia , Fenótipo , Polimorfismo de Nucleotídeo Único , Síndrome de Tourette/patologia
10.
Eur Child Adolesc Psychiatry ; 24(2): 141-51, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24771252

RESUMO

Tourette syndrome (TS) is a neuropsychiatric disorder characterized by recurrent motor and vocal tics, often accompanied by obsessive-compulsive disorder and/or attention-deficit/hyperactivity disorder. While the evidence for a genetic contribution is strong, its exact nature has yet to be clarified fully. There is now mounting evidence that the genetic risks for TS include both common and rare variants and may involve complex multigenic inheritance or, in rare cases, a single major gene. Based on recent progress in many other common disorders with apparently similar genetic architectures, it is clear that large patient cohorts and open-access repositories will be essential to further advance the field. To that end, the large multicenter Tourette International Collaborative Genetics (TIC Genetics) study was established. The goal of the TIC Genetics study is to undertake a comprehensive gene discovery effort, focusing both on familial genetic variants with large effects within multiply affected pedigrees and on de novo mutations ascertained through the analysis of apparently simplex parent-child trios with non-familial tics. The clinical data and biomaterials (DNA, transformed cell lines, RNA) are part of a sharing repository located within the National Institute for Mental Health Center for Collaborative Genomics Research on Mental Disorders, USA, and will be made available to the broad scientific community. This resource will ultimately facilitate better understanding of the pathophysiology of TS and related disorders and the development of novel therapies. Here, we describe the objectives and methods of the TIC Genetics study as a reference for future studies from our group and to facilitate collaboration between genetics consortia in the field of TS.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/complicações , Transtorno Obsessivo-Compulsivo/complicações , Transtornos de Tique/complicações , Tiques/complicações , Síndrome de Tourette/genética , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Criança , Comportamento Cooperativo , Feminino , Interação Gene-Ambiente , Ligação Genética , Predisposição Genética para Doença , Genômica , Humanos , Transtorno Obsessivo-Compulsivo/psicologia , Linhagem , Transtornos de Tique/psicologia , Tiques/psicologia , Síndrome de Tourette/psicologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa