RESUMO
OBJECTIVE: Food addiction is a multifactorial disorder characterised by a loss of control over food intake that may promote obesity and alter gut microbiota composition. We have investigated the potential involvement of the gut microbiota in the mechanisms underlying food addiction. DESIGN: We used the Yale Food Addiction Scale (YFAS) 2.0 criteria to classify extreme food addiction in mouse and human subpopulations to identify gut microbiota signatures associated with vulnerability to this disorder. RESULTS: Both animal and human cohorts showed important similarities in the gut microbiota signatures linked to food addiction. The signatures suggested possible non-beneficial effects of bacteria belonging to the Proteobacteria phylum and potential protective effects of Actinobacteria against the development of food addiction in both cohorts of humans and mice. A decreased relative abundance of the species Blautia wexlerae was observed in addicted humans and of Blautia genus in addicted mice. Administration of the non-digestible carbohydrates, lactulose and rhamnose, known to favour Blautia growth, led to increased relative abundance of Blautia in mice faeces in parallel with dramatic improvements in food addiction. A similar improvement was revealed after oral administration of Blautia wexlerae as a beneficial microbe. CONCLUSION: By understanding the crosstalk between this behavioural alteration and gut microbiota, these findings constitute a step forward to future treatments for food addiction and related eating disorders.
Assuntos
Dependência de Alimentos , Microbioma Gastrointestinal , Animais , Microbioma Gastrointestinal/fisiologia , Camundongos , Humanos , Dependência de Alimentos/microbiologia , Masculino , Feminino , Adulto , Fezes/microbiologia , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND: The microbiota is emerging as a key factor in the predisposition to insulin resistance and obesity. OBJECTIVE: To understand the interplay among gut microbiota and insulin sensitivity in multiple tissues. DESIGN: Integrative multiomics and multitissue approach across six studies, combining euglycaemic clamp measurements (used in four of the six studies) with other measurements of glucose metabolism and insulin resistance (glycated haemoglobin (HbA1c) and fasting glucose). RESULTS: Several genera and species from the Proteobacteria phylum were consistently negatively associated with insulin sensitivity in four studies (ADIPOINST, n=15; IRONMET, n=121, FLORINASH, n=67 and FLOROMIDIA, n=24). Transcriptomic analysis of the jejunum, ileum and colon revealed T cell-related signatures positively linked to insulin sensitivity. Proteobacteria in the ileum and colon were positively associated with HbA1c but negatively with the number of T cells. Jejunal deoxycholic acid was negatively associated with insulin sensitivity. Transcriptomics of subcutaneous adipose tissue (ADIPOMIT, n=740) and visceral adipose tissue (VAT) (ADIPOINST, n=29) revealed T cell-related signatures linked to HbA1c and insulin sensitivity, respectively. VAT Proteobacteria were negatively associated with insulin sensitivity. Multiomics and multitissue integration in the ADIPOINST and FLORINASH studies linked faecal Proteobacteria with jejunal and liver deoxycholic acid, as well as jejunal, VAT and liver transcriptomic signatures involved in the actin cytoskeleton, insulin and T cell signalling. Fasting glucose was consistently linked to interferon-induced genes and antiviral responses in the intestine and VAT. Studies in Drosophila melanogaster validated these human insulin sensitivity-associated changes. CONCLUSION: These data provide comprehensive insights into the microbiome-gut-adipose-liver axis and its impact on systemic insulin action, suggesting potential therapeutic targets.Cite Now.
RESUMO
BACKGROUND: There are conflicting results among studies on the association between serum ferritin (SF) and metabolic syndrome (MetS), and by groups of sex/menopausal status. To date, there are no studies on British populations. The SF-MetS association might be U/J-shaped. We evaluated whether SF was independently associated with MetS (harmonized definition) in people from Shetland, Scotland. METHODS: We analysed cross-sectional data from the Viking Health Study-Shetland (589 premenopausal women [PreMW], 625 postmenopausal women [PostW] and 832 men). Logistic regressions using two approaches, one with the lowest sex and menopausal status-specific ferritin quartile (Q) as the reference and other using the middle two quartiles combined (2-3) as the reference, were conducted to estimate the SF-MetS association. The shape of the association was verified via cubic spline analyses. The associations were adjusted for age, inflammatory and hepatic injury markers, alcohol intake, smoking and BMI. RESULTS: Prevalence of MetS was 18.3%. Among PostMW both low and high SF were associated with MetS (fully adjusted odds ratios [95% confidence interval] compared to the middle two quartiles combined were: 1.99 [1.17-3.38] p =.011 for Q1 and 2.10 [1.27-3.49] p =.004 for Q4) This U-shaped pattern was confirmed in the cubic spline analysis in PostMW with a ferritin range of 15-200 ug/L. In men, a positive association between ferritin quartiles with Q1 as the reference, did not remain significant after adjustment for BMI. CONCLUSION: Extreme quartiles of iron status were positively associated with MetS in PostMW, while no SF-MetS associations were found in men or PreMW. The ferritin-MetS association pattern differs between populations and U/J-shaped associations may exist.
RESUMO
Classically, the regulation of energy balance has been based on central and peripheral mechanisms sensing energy, nutrients, metabolites, and hormonal cues. Several cellular mechanisms at central level, such as hypothalamic AMP-activated protein kinase (AMPK), integrate this information to elicit counterregulatory responses that control feeding, energy expenditure, and glucose homeostasis, among other processes. Recent data have added more complexity to the homeostatic regulation of metabolism by introducing, for example, the key role of "traditional" senses and sensorial information in this complicated network. In this regard, current evidence is showing that olfaction plays a key and bidirectional role in energy homeostasis. Although nutritional status dynamically and profoundly impacts olfactory sensitivity, the sense of smell is involved in food appreciation and selection, as well as in brown adipose tissue (BAT) thermogenesis and substrate utilization, with some newly described actors, such as olfactomedin 2 (OLFM2), likely playing a major role. Thus, olfactory inputs are contributing to the regulation of both sides of the energy balance equation, namely, feeding and energy expenditure (EE), as well as whole body metabolism. Here, we will review the current knowledge and advances about the role of olfaction in the regulation of energy homeostasis.
Assuntos
Obesidade , Olfato , Humanos , Obesidade/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Marrom/metabolismo , Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , TermogêneseRESUMO
BACKGROUND: Metabolic inflammation mediated obesity requires bacterial molecules to trigger immune and adipose cells leading to inflammation and adipose depot development. In addition to the well-established gut microbiota dysbiosis, a leaky gut has been identified in patients with obesity and animal models, characterized by the presence of a tissue microbiota in the adipose fat pads. METHODS: To determine its potential role, we sequenced the bacterial 16 S rRNA genes in the visceral adipose depot of patients with obesity. Taking great care (surgical, biochemical, and bioinformatic) to avoid environmental contaminants. We performed statistical discriminant analyses to identify specific signatures and constructed network of interactions between variables. RESULTS: The data showed that a specific 16SrRNA gene signature was composed of numerous bacterial families discriminating between lean versus patients with obesity and people with severe obesity. The main discriminant families were Burkholderiaceae, Yearsiniaceae, and Xanthomonadaceae, all of which were gram-negative. Interestingly, the Morganellaceae were totally absent from people without obesity while preponderant in all in patients with obesity. To generate hypotheses regarding their potential role, we inferred metabolic pathways from the 16SrRNA gene signatures. We identified several pathways associated with adenosyl-cobalamine previously described to be linked with adipose tissue development. We further identified chorismate biosynthesis, which is involved in aromatic amino-acid metabolism and could play a role in fat pad development. This innovative approach generates novel hypotheses regarding the gut to adipose tissue axis. CONCLUSIONS: This innovative approach generates novel hypotheses regarding the gut to adipose tissue axis in obesity and notably the potential role of tissue microbiota.
Assuntos
Gordura Intra-Abdominal , Microbiota , Animais , Humanos , Gordura Intra-Abdominal/metabolismo , Obesidade/metabolismo , Obesidade Abdominal/metabolismo , Inflamação/metabolismo , Tecido Adiposo/metabolismoRESUMO
BACKGROUND: Gut microbiota is involved in the development of liver diseases such as fibrosis. We and others identified that selected sets of gut bacterial DNA and bacteria translocate to tissues, notably the liver, to establish a non-infectious tissue microbiota composed of microbial DNA and a low frequency live bacteria. However, the precise set of bacterial DNA, and thereby the corresponding taxa associated with the early stages of fibrosis need to be identified. Furthermore, to overcome the impact of different group size and patient origins we adapted innovative statistical approaches. Liver samples with low liver fibrosis scores (F0, F1, F2), to study the early stages of the disease, were collected from Romania(n = 36), Austria(n = 10), Italy(n = 19), and Spain(n = 17). The 16S rRNA gene was sequenced. We considered the frequency, sparsity, unbalanced sample size between cohorts to identify taxonomic profiles and statistical differences. RESULTS: Multivariate analyses, including adapted spectral clustering with L1-penalty fair-discriminant strategies, and predicted metagenomics were used to identify that 50% of liver taxa associated with the early stage fibrosis were Enterobacteriaceae, Pseudomonadaceae, Xanthobacteriaceae and Burkholderiaceae. The Flavobacteriaceae and Xanthobacteriaceae discriminated between F0 and F1. Predicted metagenomics analysis identified that the preQ0 biosynthesis and the potential pathways involving glucoryranose and glycogen degradation were negatively associated with liver fibrosis F1-F2 vs F0. CONCLUSIONS: Without demonstrating causality, our results suggest first a role of bacterial translocation to the liver in the progression of fibrosis, notably at the earliest stages. Second, our statistical approach can identify microbial signatures and overcome issues regarding sample size differences, the impact of environment, and sets of analyses. TRIAL REGISTRATION: TirguMECCH ROLIVER Prospective Cohort for the Identification of Liver Microbiota, registration 4065/2014. Registered 01 01 2014.
Assuntos
Cirrose Hepática , Microbiota , Humanos , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Estudos Prospectivos , FibroseRESUMO
Lipopolysaccharide binding protein (LBP) knockout mice models are protected against the deleterious effects of major acute inflammation but its possible physiological role has been less well studied. We aimed to evaluate the impact of liver LBP downregulation (using nanoparticles containing siRNA- Lbp) on liver steatosis, inflammation and fibrosis during a standard chow diet (STD), and in pathological non-obesogenic conditions, under a methionine and choline deficient diet (MCD, 5 weeks). Under STD, liver Lbp gene knockdown led to a significant increase in gene expression markers of liver inflammation (Itgax, Tlr4, Ccr2, Ccl2 and Tnf), liver injury (Krt18 and Crp), fibrosis (Col4a1, Col1a2 and Tgfb1), endoplasmic reticulum (ER) stress (Atf6, Hspa5 and Eif2ak3) and protein carbonyl levels. As expected, the MCD increased hepatocyte vacuolation, liver inflammation and fibrosis markers, also increasing liver Lbp mRNA. In this model, liver Lbp gene knockdown resulted in a pronounced worsening of the markers of liver inflammation (also including CD68 and MPO activity), fibrosis, ER stress and protein carbonyl levels, all indicative of non-alcoholic steatohepatitis (NASH) progression. At cellular level, Lbp gene knockdown also increased expression of the proinflammatory mediators (Il6, Ccl2), and markers of fibrosis (Col1a1, Tgfb1) and protein carbonyl levels. In agreement with these findings, liver LBP mRNA in humans positively correlated with markers of liver damage (circulating hsCRP, ALT activity, liver CRP and KRT18 gene expression), and with a network of genes involved in liver inflammation, innate and adaptive immune system, endoplasmic reticulum stress and neutrophil degranulation (all with q-value<0.05). In conclusion, current findings suggest that a significant downregulation in liver LBP levels promotes liver oxidative stress and inflammation, aggravating NASH progression, in physiological and pathological non-obesogenic conditions.
Assuntos
Cirrose Hepática , Fígado , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Inflamação/genética , Cirrose Hepática/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , RNA Mensageiro/metabolismoRESUMO
Understanding the brain changes occurring during aging can provide new insights for developing treatments that alleviate or reverse cognitive decline. Neurostimulation techniques have emerged as potential treatments for brain disorders and to improve cognitive functions. Nevertheless, given the ethical restrictions of neurostimulation approaches, in silico perturbation protocols based on causal whole-brain models are fundamental to gaining a mechanistic understanding of brain dynamics. Furthermore, this strategy could serve to identify neurophysiological biomarkers differentiating between age groups through an exhaustive exploration of the global effect of all possible local perturbations. Here, we used a resting-state fMRI dataset divided into middle-aged (N =310, <65 years) and older adults (N =310, $\geq $65) to characterize brain states in each group as a probabilistic metastable substate (PMS) space. We showed that the older group exhibited a reduced capability to access a metastable substate that overlaps with the rich club. Then, we fitted the PMS to a whole-brain model and applied in silico stimulations in each node to force transitions from the brain states of the older- to the middle-aged group. We found that the precuneus was the best stimulation target. Overall, these findings could have important implications for designing neurostimulation interventions for reversing the effects of aging on whole-brain dynamics.
Assuntos
Envelhecimento , Encéfalo , Pessoa de Meia-Idade , Humanos , Idoso , Encéfalo/fisiologia , Envelhecimento/fisiologia , Imageamento por Ressonância Magnética , Cognição/fisiologia , Lobo Parietal , Mapeamento EncefálicoRESUMO
Excess iron is known to trigger adipose tissue dysfunction and insulin resistance. Circulating markers of iron status have been associated with obesity and adipose tissue in cross-sectional studies. We aimed to evaluate whether iron status is linked to changes in abdominal adipose tissue longitudinally. Subcutaneous abdominal tissue (SAT) and visceral adipose tissue (VAT) and its quotient (pSAT) were assessed using magnetic resonance imaging (MRI), at baseline and after one year of follow-up, in 131 (79 in follow-up) apparently healthy subjects, with and without obesity. Insulin sensitivity (euglycemic- hyperinsulinemic clamp) and markers of iron status were also evaluated. Baseline serum hepcidin (p = 0.005 and p = 0.002) and ferritin (p = 0.02 and p = 0.01)) were associated with an increase in VAT and SAT over one year in all subjects, while serum transferrin (p = 0.01 and p = 0.03) and total iron-binding capacity (p = 0.02 and p = 0.04) were negatively associated. These associations were mainly observed in women and in subjects without obesity, and were independent of insulin sensitivity. After controlling for age and sex, serum hepcidin was significantly associated with changes in subcutaneous abdominal tissue index (iSAT) (ß = 0.406, p = 0.007) and visceral adipose tissue index (iVAT) (ß = 0.306, p = 0.04), while changes in insulin sensitivity (ß = 0.287, p = 0.03) and fasting triglycerides (ß = -0.285, p = 0.03) were associated with changes in pSAT. These data indicated that serum hepcidin are associated with longitudinal changes in SAT and VAT, independently of insulin sensitivity. This would be the first prospective study evaluating the redistribution of fat according to iron status and chronic inflammation.
Assuntos
Resistência à Insulina , Gordura Intra-Abdominal , Ferro , Feminino , Humanos , Tecido Adiposo , Estudos Transversais , Hepcidinas , Ferro/metabolismo , Obesidade/complicações , Estudos Prospectivos , Gordura SubcutâneaRESUMO
The human gut microbiota is known to be shaped by a variety of environmental factors (diet, drugs, geography and sanitation) and host intrinsic factors (age and sexual development). The differences in gut microbiota between sexes are minimal before adulthood and late adulthood, and marked during adulthood. For instance, consistent higher abundances of Akkermansia and Ruminococcus have been observed in adult women compared to men and most studies have found higher abundances of Prevotella and Fusobacterium (linked to a diet rich in animal proteins) in adult men compared to women. The gut microbiota taxonomy and functionality present in women is more similar to men once reached the menopause. In fact, specific taxa have been associated with the levels of different sexual hormones and their precursors in blood. The gut microbiota composition and circulating testosterone levels are also tightly linked to the extent that microbial signatures can predict its levels in blood. Not only sexual hormones seem to influence the gut microbiome, but also the latter participates in the metabolism of these hormones, with some bacteria being able to metabolize gonadal steroid hormones (one example is 3ß-hydroxysteroid dehydrogenase, a testosterone degrading enzyme). In summary, the relationships between the gut microbiome and sexual traits are bidirectional. In addition, other phenotypes and cultural gender-related factors could drive sex-related differences. It is important to note that other members of the microbiome (Archeae, viruses and fungi) have been largely unexplored in relation to this sexual dimorphism. More research is needed on this topic.
RESUMO
BACKGROUND: Iron stores, estimated as ferritin levels, and type 2 diabetes (T2D) have been associated previously, while findings regarding coronary heart disease (CHD) and cerebrovascular disease (CEVD) are still inconclusive. No study has focused on simultaneous evaluation of associations between iron stores and the above cardiometabolic diseases (CMD) in the same population. We aim to evaluate the association between serum ferritin and risk of T2D, CHD and CEVD in Scottish population over a wide range of ferritin levels. METHODS: Longitudinal study in 6,497 participants of the 1995 and 1998 Scottish health surveys, who were followed-up until 2011. Cox regression models were conducted adjusting for age, sex/menopausal status, fibrinogen, GGT levels, smoking, alcohol consumption, total cholesterol, HDL-cholesterol, blood pressure, and BMI. Ferritin was used as continuous (sex/menopausal status-specific Z score) and categorical variable (sex/menopausal status-specific quartiles, quintiles and sextiles). RESULTS: During follow-up, 4.9% of the participants developed T2D, 5.3% CHD, and 2.3% CEVD. By using ferritin quartiles, serum ferritin was positively associated with T2D, CHD and CEVD but only the association with T2D remained after adjustment for covariates [Quartile 4 v. 1: adjusted HR 95% CI 1.59 (1.10-2.34); P = 0.006]. When ferritin sextiles were used (6 v. 1), the ferritin-CEVD association became slightly stronger and significant [adjusted HR 95% CI 2.08 (1.09-3.94); P = 0.024]. CONCLUSIONS: Iron stores relate differently to each CMD. Serum ferritin levels were positively and independently associated with incident T2D, and with incident CEVD if higher cut-off points for high ferritin levels were considered.
Assuntos
Transtornos Cerebrovasculares , Doença das Coronárias , Ferritinas/sangue , Adulto , Transtornos Cerebrovasculares/diagnóstico , Transtornos Cerebrovasculares/epidemiologia , Doença das Coronárias/diagnóstico , Doença das Coronárias/epidemiologia , Humanos , Estudos Longitudinais , Fatores de Risco , Escócia/epidemiologiaRESUMO
Normal aging causes disruptions in the brain that can lead to cognitive decline. Resting-state functional magnetic resonance imaging studies have found significant age-related alterations in functional connectivity across various networks. Nevertheless, most of the studies have focused mainly on static functional connectivity. Studying the dynamics of resting-state brain activity across the whole-brain functional network can provide a better characterization of age-related changes. Here, we employed two data-driven whole-brain approaches based on the phase synchronization of blood-oxygen-level-dependent signals to analyze resting-state fMRI data from 620 subjects divided into two groups (middle-age group (n = 310); age range, 50-64 years versus older group (n = 310); age range, 65-91 years). Applying the intrinsic-ignition framework to assess the effect of spontaneous local activation events on local-global integration, we found that the older group showed higher intrinsic ignition across the whole-brain functional network, but lower metastability. Using Leading Eigenvector Dynamics Analysis, we found that the older group showed reduced ability to access a metastable substate that closely overlaps with the so-called rich club. These findings suggest that functional whole-brain dynamics are altered in aging, probably due to a deficiency in a metastable substate that is key for efficient global communication in the brain.
Assuntos
Envelhecimento/fisiologia , Encéfalo/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Encéfalo/fisiologia , Feminino , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiologiaRESUMO
BACKGROUND: Inhibitory control (IC) is critical to keep long-term goals in everyday life. Bidirectional relationships between IC deficits and obesity are behind unhealthy eating and physical exercise habits. METHODS: We studied gut microbiome composition and functionality, and plasma and faecal metabolomics in association with cognitive tests evaluating inhibitory control (Stroop test) and brain structure in a discovery (n=156), both cross-sectionally and longitudinally, and in an independent replication cohort (n=970). Faecal microbiota transplantation (FMT) in mice evaluated the impact on reversal learning and medial prefrontal cortex (mPFC) transcriptomics. RESULTS: An interplay among IC, brain structure (in humans) and mPFC transcriptomics (in mice), plasma/faecal metabolomics and the gut metagenome was found. Obesity-dependent alterations in one-carbon metabolism, tryptophan and histidine pathways were associated with IC in the two independent cohorts. Bacterial functions linked to one-carbon metabolism (thyX,dut, exodeoxyribonuclease V), and the anterior cingulate cortex volume were associated with IC, cross-sectionally and longitudinally. FMT from individuals with obesity led to alterations in mice reversal learning. In an independent FMT experiment, human donor's bacterial functions related to IC deficits were associated with mPFC expression of one-carbon metabolism-related genes of recipient's mice. CONCLUSION: These results highlight the importance of targeting obesity-related impulsive behaviour through the induction of gut microbiota shifts.
Assuntos
Aminoácidos Aromáticos/metabolismo , Carbono/metabolismo , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiologia , Inibição Psicológica , Obesidade/complicações , Adulto , Idoso , Animais , Estudos Transversais , Fígado Gorduroso/microbiologia , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Fenótipo , TranscriptomaRESUMO
The relationship among chronic low-grade inflammation, insulin resistance and other obesity-associated metabolic disturbances is increasingly recognized. The possible mechanisms that trigger these immunologic alterations remain to be fully understood. The complement system is a crucial element of immune defense system, being important in the activation of innate and adaptative immune response, promoting the clearance of apoptotic and damaged endogenous cells and participating in processes of tissue development, degeneration, and regeneration. Circulating components of the complement system appear to be dysregulated in obesity-associated metabolic disturbances. The activation of the complement system is also evident in adipose tissue from obese subjects, in association with subclinical inflammation and alterations in glucose metabolism. The possible contribution of some components of the complement system in the development of insulin resistance and obesity-associated metabolic disturbances, and the possible role of complement system in adipose tissue physiology is reviewed here. The modulation of the complement system could constitute a potential target in the pathophysiology and therapy of obesity and associated metabolic disease.
Assuntos
Tecido Adiposo/metabolismo , Proteínas do Sistema Complemento/metabolismo , Resistência à Insulina , Doenças Metabólicas/sangue , Doenças Metabólicas/metabolismo , Obesidade/sangue , Obesidade/metabolismo , Complemento C3/metabolismo , Humanos , Inflamação/metabolismoRESUMO
BACKGROUND AND OBJECTIVES: The importance of hydrogen sulfide is increasingly recognized in the pathophysiology of obesity and type 2 diabetes in animal models. Very few studies have evaluated circulating sulfides in humans, with discrepant results. Here, we aimed to investigate serum sulfide levels according to obesity. SUBJECTS AND METHODS: Serum sulfide levels were analyzed, using a selective fluorescent probe, in two independent cohorts [cross-sectionally in discovery (n = 139) and validation (n = 71) cohorts, and longitudinally in 82 participants from discovery cohort]. In the validation cohort, blood gene expression of enzymes contributing to H2S generation and consumption were also measured. RESULTS: In the discovery cohort, serum sulfide concentration was significantly increased in subjects with morbid obesity at baseline and follow-up, and positively correlated with BMI and fat mass, but negatively with total cholesterol, haemoglobin, serum ferritin, iron and bilirubin after adjusting by age, gender and fat mass. Fat mass (ß = 0.51, t = 3.67, p < 0.0001) contributed independently to age-, gender-, insulin sensitivity- and BMI-adjusted serum sulfide concentration variance. Importantly, receiver operating characteristic analysis demonstrated the relevance of fat mass predicting serum sulfide levels, which was replicated in the validation cohort. In addition, serum sulfide concentration was decreased in morbidly obese subjects with impaired compared to those with normal fasting glucose. Longitudinally, weight gain resulted in increased serum sulfide concentration, whereas weight loss had opposite effects, being the percent change in serum sulfide positively correlated with the percent change in BMI and waist circumference, but negatively with bilirubin. Whole blood CBS, CTH, MPST, SQOR, TST and MPO gene expression was not associated to obesity or serum sulfide concentration. CONCLUSIONS: Altogether these data indicated that serum sulfide concentrations were increased in subjects with morbid obesity in proportion to fat mass and inversely associated with circulating markers of haem degradation.
Assuntos
Tecido Adiposo/fisiologia , Obesidade Mórbida , Sulfetos/sangue , Adulto , Estudos Transversais , Diabetes Mellitus Tipo 2 , Feminino , Humanos , Resistência à Insulina , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/sangue , Obesidade Mórbida/epidemiologia , Obesidade Mórbida/fisiopatologia , Adulto JovemRESUMO
Chronic systemic low-level inflammation in metabolic disease is known to affect adipose tissue biology. Lysozyme (LYZ) is a major innate immune protein but its role in adipose tissue has not been investigated. Here, we aimed to investigate LYZ in human and rodents fat depots, and its possible role in obesity-associated adipose tissue dysfunction. LYZ mRNA and protein were identified to be highly expressed in adipose tissue from subjects with obesity and linked to systemic chronic-low grade inflammation, adipose tissue inflammation and metabolic disturbances, including hyperglycemia, dyslipidemia and decreased markers of adipose tissue adipogenesis. These findings were confirmed in experimental models after a high-fat diet in mice and rats and also in ob/ob mice. Importantly, specific inguinal and perigonadal white adipose tissue lysozyme (Lyz2) gene knockdown in high-fat diet-fed mice resulted in improved adipose tissue inflammation in parallel to reduced lysozyme activity. Of note, Lyz2 gene knockdown restored adipogenesis and reduced weight gain in this model. In conclusion, altogether these observations point to lysozyme as a new actor in obesity-associated adipose tissue dysfunction. The therapeutic targeting of lysozyme production might contribute to improve adipose tissue metabolic homeostasis.
Assuntos
Adipogenia , Dieta Hiperlipídica/efeitos adversos , Inflamação/genética , Muramidase/genética , Tecido Adiposo/metabolismo , Animais , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/genética , Ratos WistarRESUMO
INTRODUCTION: Obesity is usually considered a risk factor for surgical complications. Laparoscopic adrenalectomy has replaced open adrenalectomy as the standard operation for adrenal tumors. OBJECTIVE: To compare the safety of laparoscopic adrenalectomy to treat adrenal tumors in obese versus nonobese patients. METHODS: This observational cohort study analyzed consecutive patients who underwent laparoscopic adrenalectomy with a lateral transperitoneal approach at a single center (2003-2020). Data and outcomes of obese (body mass index ≥30 kg/m2) and nonobese patients were compared. To analyze the association between operative time and other variables, we used simple and multivariate linear regression. RESULTS: N = 160 (90 obese/70 nonobese) patients underwent laparoscopic adrenalectomy. Cushing syndrome and pheochromocytoma were the most frequent indications. Obese patients were older (58 vs. 52 years, p < 0.001). A greater proportion of obese patients were ASA grade III + IV (71.1 vs. 48.6%, p = 0.004). Obesity was associated with a longer operative time (72.5 vs. 60 min, p < 0.001) and greater blood loss (40 vs. 20 mL, p = 0.022). There were no differences in conversion, morbidity, or hospital stay. After adjustment for confounding factors, operative time was positively correlated with BMI ≥30 kg/m2, learning curve, estimated blood loss, 2D laparoscopy, and specimen size. CONCLUSION: Lateral transperitoneal laparoscopic adrenalectomy is safe in patients with a BMI 30-35 kg/m2, so these patients also benefit from this minimally invasive surgery.
Assuntos
Adenoma/cirurgia , Neoplasias das Glândulas Suprarrenais/cirurgia , Adrenalectomia/métodos , Laparoscopia , Obesidade/complicações , Feocromocitoma/cirurgia , Adenoma/complicações , Adolescente , Neoplasias das Glândulas Suprarrenais/complicações , Adulto , Idoso , Perda Sanguínea Cirúrgica/estatística & dados numéricos , Estudos de Casos e Controles , Feminino , Humanos , Tempo de Internação/estatística & dados numéricos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Duração da Cirurgia , Feocromocitoma/complicações , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Estudos Prospectivos , Fatores de Risco , Resultado do Tratamento , Adulto JovemRESUMO
The adipokine Neuregulin 4 (Nrg4) protects against obesity-induced insulin resistance. Here, we analyze how the downregulation of Nrg4 influences insulin action and the underlying mechanisms in adipocytes. Validated shRNA lentiviral vectors were used to generate scramble (Scr) and Nrg4 knockdown (KD) 3T3-L1 adipocytes. Adipogenesis was unaffected in Nrg4 KD adipocytes, but there was a complete impairment of the insulin-induced 2-deoxyglucose uptake, which was likely the result of reduced insulin receptor and Glut4 protein. Downregulation of Nrg4 enhanced the expression of proinflammatory cytokines. Anti-inflammatory agents recovered the insulin receptor, but not Glut4, content. Proteins enriched in Glut4 storage vesicles such as the insulin-responsive aminopeptidase (IRAP) and Syntaxin-6 as well as TBC1D4, a protein involved in the intracellular retention of Glut4 vesicles, also decreased by Nrg4 KD. Insulin failed to reduce autophagy in Nrg4 KD adipocytes, observed by a minor effect on mTOR phosphorylation, at the time that proteins involved in autophagy such as LC3-II, Rab11, and Clathrin were markedly upregulated. The lysosomal activity inhibitor bafilomycin A1 restored Glut4, IRAP, Syntaxin-6, and TBC1D4 content to those found in control adipocytes. Our study reveals that Nrg4 preserves the insulin responsiveness by preventing inflammation and, in turn, benefits the insulin regulation of autophagy.
Assuntos
Autofagia/fisiologia , Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina/fisiologia , Neurregulinas/metabolismo , Receptor de Insulina/biossíntese , Células 3T3 , Adipócitos/metabolismo , Animais , Linhagem Celular , Cistinil Aminopeptidase/biossíntese , Citocinas/biossíntese , Desoxiglucose/metabolismo , Regulação para Baixo , Proteínas Ativadoras de GTPase/biossíntese , Inflamação/patologia , Insulina/metabolismo , Camundongos , Neurregulinas/biossíntese , Neurregulinas/genética , Proteínas Qa-SNARE/biossíntese , Interferência de RNA , RNA Interferente Pequeno/genéticaRESUMO
The human body is populated by myriads of microorganisms throughout its surface and in the cavities connected to the outside. The microbial colonisers of the intestine (microbiota) are a functional and non-expendable part of the human organism: they provide genes (microbiome) and additional functions to the resources of our species and participate in multiple physiological processes (somatic development, nutrition, immunity, etc.). Some chronic non-communicable diseases of developed society (atopias, metabolic syndrome, inflammatory diseases, cancer and some behaviour disorders) are associated with dysbiosis: loss of species richness in the intestinal microbiota and deviation from the ancestral microbial environment. Changes in the vertical transmission of the microbiome, the use of antiseptics and antibiotics, and dietary habits in industrialised society appear to be at the origin of dysbiosis. Generating and maintaining diversity in the microbiota is a new clinical target for health promotion and disease prevention.
Assuntos
Microbioma Gastrointestinal/fisiologia , Humanos , Sistema Imunitário/fisiologia , Sistemas Neurossecretores/fisiologiaRESUMO
BACKGROUND: Obstructive sleep apnea (OSA) is a common disease caused by repeated episodes of collapse of the upper airway during sleep and is associated with the development of cardiovascular disease (CVD). However, there is high heterogeneity in the impact of OSA on patients. Until now, the profile of OSA patients at risk of developing CVD has not been defined, including the measurable variables that could be used to predict the CVD risk of a patient with OSA. OBJECTIVE: The aim of this study was to identify the microRNA (mi-RNA) profile associated with CVD in patients with OSA. METHOD: This is an observational, cross-sectional study that included 132 male patients. Three groups were defined as OSA patients, OSA patients with hypertension, and OSA patients who developed a major cardiovascular event. Polysomnography and ambulatory blood pressure measurements were performed. The expression profiling of 188 miRNAs in plasma was performed in 21 subjects (matched by BMI and age) by the TaqMan low density array (TLDA). miRNAs differentially expressed in the different subgroups of patients and miRNAs that correlated with the cardiovascular risk SCORE were selected for validation by RT-qPCR in the 111 remaining patients. RESULTS: From the TLDA analysis, 7 miRNAs were selected for validation. Differential expression was not confirmed in any of the miRNAs. miR-143 was associated with nocturnal systolic blood pressure. miR-107 correlated with 24-h blood pressure parameters and with nocturnal hypertension. miR-486 was associated with the cardiovascular risk SCORE. CONCLUSIONS: The circulating profile of miRNAs does not seem to be different in any of the subgroups of patients with OSA and different cardiovascular risk factors. Nevertheless, miR-107 and miR-143 are associated with specific blood pressure parameters in patients with OSA and miR-486 is associated with the cardiovascular risk SCORE.