Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Drug Deliv Rev ; 200: 114966, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37329985

RESUMO

Gastrointestinal mucus plays essential roles in modulating interactions between intestinal lumen contents, including orally delivered drug carriers and the gut microbiome, and underlying epithelial and immune tissues and cells. This review is focused on the properties of and methods for studying native gastrointestinal mucus and its interactions with intestinal lumen contents, including drug delivery systems, drugs, and bacteria. The properties of gastrointestinal mucus important to consider in its analysis are first presented, followed by a discussion of different experimental setups used to study gastrointestinal mucus. Applications of native intestinal mucus are then described, including experimental methods used to study mucus as a barrier to drug delivery and interactions with intestinal lumen contents that impact barrier properties. Given the significance of the microbiota in health and disease, its impact on drug delivery and drug metabolism, and the use of probiotics and microbe-based delivery systems, analysis of interactions of bacteria with native intestinal mucus is then reviewed. Specifically, bacteria adhesion to, motility within, and degradation of mucus is discussed. Literature noted is focused largely on applications of native intestinal mucus models as opposed to isolated mucins or reconstituted mucin gels.


Assuntos
Aderência Bacteriana , Portadores de Fármacos , Humanos , Portadores de Fármacos/metabolismo , Intestinos , Mucinas/metabolismo , Muco/metabolismo , Bactérias/metabolismo , Mucosa Intestinal/metabolismo
2.
Cell Rep ; 42(12): 113481, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37980564

RESUMO

Hydrogen sulfide (H2S) is a gaseous microbial metabolite whose role in gut diseases is debated, with contradictory results stemming from experimental difficulties associated with accurate dosing and measuring H2S and the use of model systems that do not accurately represent the human gut environment. Here, we engineer Escherichia coli to titrate H2S across the physiological range in a gut microphysiological system (chip) supportive of the co-culture of microbes and host cells. The chip is engineered to maintain H2S gas tension and enables visualization of co-culture in real time with confocal microscopy. Engineered strains colonize the chip and are metabolically active for 2 days, during which they produce H2S across a 16-fold range and induce changes in host gene expression and metabolism in an H2S-concentration-dependent manner. These results validate a platform for studying the mechanisms underlying microbe-host interactions by enabling experiments that are infeasible with current animal and in vitro models.


Assuntos
Microbioma Gastrointestinal , Sulfeto de Hidrogênio , Animais , Humanos , Sulfeto de Hidrogênio/metabolismo , Sistemas Microfisiológicos , Bactérias/metabolismo , Interações entre Hospedeiro e Microrganismos , Escherichia coli/metabolismo
3.
bioRxiv ; 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37293009

RESUMO

Hydrogen sulfide (H2S) is a gaseous microbial metabolite whose role in gut diseases is debated, largely due to the difficulty in controlling its concentration and the use of non-representative model systems in previous work. Here, we engineered E. coli to titrate H2S controllably across the physiological range in a gut microphysiological system (chip) supportive of the co-culture of microbes and host cells. The chip was designed to maintain H2S gas tension and enable visualization of co-culture in real-time with confocal microscopy. Engineered strains colonized the chip and were metabolically active for two days, during which they produced H2S across a sixteen-fold range and induced changes in host gene expression and metabolism in an H2S concentration-dependent manner. These results validate a novel platform for studying the mechanisms underlying microbe-host interactions, by enabling experiments that are infeasible with current animal and in vitro models.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa