Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Eur J Neurosci ; 59(8): 1907-1917, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37885306

RESUMO

Schizophrenia (SCZ) is a complex psychiatric disorder characterized by a wide range of clinical symptoms, including disrupted sleep. In recent years, there has been growing interest in assessing alterations in sleep parameters in patients with SCZ. Sleep spindles are brief (0.5-2 s) bursts of 12- to 16-Hz rhythmic electroencephalogram (EEG) oscillatory activity occurring during non-rapid eye movement (NREM) sleep. Spindles have been implicated in several critical brain functions, including learning, memory and plasticity, and are thought to reflect the integrity of underlying thalamocortical circuits. This review aims to provide an overview of the current research investigating sleep spindles in SCZ. After briefly describing the neurophysiological features of sleep spindles, I will discuss alterations in spindle characteristics observed in SCZ, their associations with the clinical symptomatology of these patients and their putative underlying neuronal and molecular mechanisms. I will then discuss the utility of sleep spindle measures as predictors of treatment response and disease progression. Finally, I will highlight future directions for research in this emerging field, including the prospect of utilizing sleep spindles as neurophysiological biomarkers of SCZ.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico , Fases do Sono/fisiologia , Sono/fisiologia , Eletroencefalografia , Biomarcadores
2.
Mol Psychiatry ; 28(5): 2049-2057, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37055512

RESUMO

Sleep and rest-activity-rhythm (RAR) abnormalities are commonly reported in schizophrenia spectrum disorder (SSD) patients. However, an in-depth characterization of sleep/RAR alterations in SSD, including patients in different treatment settings, and the relationship between these alterations and SSD clinical features (e.g., negative symptoms) is lacking. SSD (N = 137 altogether, N = 79 residential and N = 58 outpatients) and healthy control (HC) subjects (N = 113) were recruited for the DiAPAson project. Participants wore an ActiGraph for seven consecutive days to monitor habitual sleep-RAR patterns. Sleep/rest duration, activity (i.e., M10, calculated on the 10 most active hours), rhythm fragmentation within days (i.e., intra-daily variability, IV; beta, steepness of rest-active changes), and rhythm regularity across days (i.e., inter-daily stability, IS) were computed in each study participant. Negative symptoms were assessed in SSD patients with the Brief Negative Symptom Scale (BNSS). Both SSD groups showed lower M10 and longer sleep/rest duration vs. HC, while only residential patients had more fragmented and irregular rhythms than HC. Compared to outpatients, residential patients had lower M10 and higher beta, IV and IS. Furthermore, residential patients had worse BNSS scores relative to outpatients, and higher IS contributed to between-group differences in BNSS score severity. Altogether, residentials and outpatients SSD had both shared and unique abnormalities in Sleep/RAR measures vs. HC and relative to one another, which also contributed to the patients' negative symptom severity. Future work will help establish whether improving some of these measures may ameliorate the quality of life and clinical symptoms of SSD patients.

3.
Int J Mol Sci ; 24(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37175389

RESUMO

N-acetylaspartate (NAA) and choline (Cho) are two brain metabolites implicated in several key neuronal functions. Abnormalities in these metabolites have been reported in both early course and chronic patients with schizophrenia (SCZ). It is, however, unclear whether NAA and Cho's alterations occur even before the onset of the disorder. Clinical high risk (CHR) individuals are a population uniquely enriched for psychosis and SCZ. In this exploratory study, we utilized 7-Tesla magnetic resonance spectroscopic imaging (MRSI) to examine differences in total NAA (tNAA; NAA + N-acetylaspartylglutamate [NAAG]) and major choline-containing compounds, including glycerophosphorylcholine and phosphorylcholine [tCho], over the creatine (Cre) levels between 26 CHR and 32 healthy control (HC) subjects in the subcortical and cortical regions. While no tCho/Cre differences were found between groups in any of the regions of interest (ROIs), we found that CHR had significantly reduced tNAA/Cre in the right dorsal lateral prefrontal cortex (DLPFC) compared to HC, and that the right DLPFC tNAA/Cre reduction in CHR was negatively associated with their positive symptoms scores. No tNAA/Cre differences were found between CHR and HC in other ROIs. In conclusion, reduced tNAA/Cre in CHR vs. HC may represent a putative molecular biomarker for risk of psychosis and SCZ that is associated with symptom severity.


Assuntos
Hipocampo , Imageamento por Ressonância Magnética , Humanos , Espectroscopia de Ressonância Magnética , Hipocampo/metabolismo , Creatina/metabolismo , Ácido Aspártico/metabolismo , Colina/metabolismo
4.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555487

RESUMO

Converging lines of evidence suggest that an imbalance between excitation and inhibition is present in the dorsolateral prefrontal cortex (DLPFC) of schizophrenia (SCZ). Gamma-aminobutyric-acid (GABA) and, to a lesser extent, glutamate (Glu) abnormalities were reported in the DLPFC of SCZ patients, especially on the right hemisphere, by post-mortem studies. However, in vivo evidence of GABA, Glu, and Glu/GABA DLPFC abnormalities, particularly on the right side and the early stages of illness, is limited. In this preliminary study, we utilized 7-Tesla magnetic resonance spectroscopic imaging (MRSI) to investigate bilateral Glu/Creatine (Cre), GABA/Cre, and Glu/GABA in the DLPFC of sixteen first episode schizophrenia (FES), seventeen clinical high risk (CHR), and twenty-six healthy comparison (HC) subjects. FES and CHR had abnormal GABA/Cre and Glu/GABA in the right DLPFC (rDLPFC) compared with HC participants, while no differences were observed in the left DLPFC (lDLPFC) among the three groups. Furthermore, HC had higher Glu/GABA in rDLPFC compared to lDLPFC (R > L), whereas the opposite relationship (R < L) was observed in the DLPFC Glu/GABA of FES patients. Altogether, these findings indicate that GABA/Cre and Glu/GABA DLPFC alterations are present before illness manifestation and worsen in FES patients, thus representing a putative early pathophysiological biomarker for SCZ and related psychotic disorders.


Assuntos
Ácido Glutâmico , Esquizofrenia , Humanos , Córtex Pré-Frontal Dorsolateral , Esquizofrenia/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Imageamento por Ressonância Magnética , Ácido gama-Aminobutírico , Espectroscopia de Ressonância Magnética/métodos
5.
Neuroimage ; 191: 1-9, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753924

RESUMO

Sleep is imperative for brain health and well-being, and restorative sleep is associated with better cognitive functioning. Increasing evidence indicates that electrophysiological measures of sleep, especially slow wave activity (SWA), regulate the consolidation of motor and perceptual procedural memory. In contrast, the role of sleep EEG and SWA in modulating executive functions, including working memory (WM), has been far less characterized. Here, we investigated across-night changes in sleep EEG that may ameliorate WM performance. Participants (N = 25, M = 100%) underwent two consecutive nights with high-density EEG, along with N-back tasks, which were administered at three time points the day before and after the second night of sleep. Non-rapid eye movement sleep EEG power spectra, power topography, as well as several slow-wave parameters were computed and compared across nights. Improvers on the 1-back, but not non-improvers, showed a significant increase in SWA as well as in down slope and negative peak amplitude, in a fronto-parietal region, and these parameters increases predicted better WM performance. Overall, these findings show that slow-wave sleep has a beneficial effect on WM and that it can occur in the adult brain even after minimal training. This is especially relevant, when considering that WM and other executive function cognitive deficits are present in several neuropsychiatric disorders, and that slow-wave enhancing interventions can improve cognition, thus providing novel insights and treatment strategies for these patients.


Assuntos
Memória de Curto Prazo/fisiologia , Sono de Ondas Lentas/fisiologia , Adulto , Feminino , Humanos , Masculino
6.
Eur J Neurosci ; 48(8): 2738-2758, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29280209

RESUMO

Sleep abnormalities have recently gained renewed attention in patients diagnosed with schizophrenia. Disrupted thalamocortical brain oscillations hold promise as putative biomarkers or endophenotypes of the disorder. Despite an increase in studies related to sleep spindle and slow-wave activity, findings remain in part contradictory. Although sleep spindle deficits have been confirmed in several groups of patients with chronic, medicated schizophrenia, data on the early stages of the disorder and in unmedicated subjects are still insufficient. Findings on slow-wave abnormalities are largely inconclusive, possibly due to the different criteria employed to define the phenomenon and to the influence of atypical antipsychotics. In this review, we aim to address the methodological and practical issues that may have limited the consistency of findings across research groups and different patient populations. Given the neurobiological relevance of these oscillations, which reflect the integrity of thalamocortical and cortico-cortical function, research in this domain should be encouraged. To promote widespread consensus over the scientific and clinical implications of these sleep-related phenomena, we advocate uniform and sound methodological approaches. These should encompass electroencephalographic recording and analysis techniques but also selection criteria and characterization of clinical populations.


Assuntos
Córtex Cerebral/fisiopatologia , Esquizofrenia/fisiopatologia , Fases do Sono/fisiologia , Transtornos do Sono-Vigília/fisiopatologia , Tálamo/fisiopatologia , Animais , Antipsicóticos/efeitos adversos , Antipsicóticos/uso terapêutico , Córtex Cerebral/efeitos dos fármacos , Previsões , Humanos , Esquizofrenia/tratamento farmacológico , Fases do Sono/efeitos dos fármacos , Transtornos do Sono-Vigília/induzido quimicamente , Tálamo/efeitos dos fármacos
7.
Eur J Neurosci ; 48(6): 2310-2321, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30144201

RESUMO

Our recent finding of a meditation-related increase in low-frequency NREM sleep EEG oscillatory activities peaking in the theta-alpha range (4-12 Hz) was not predicted. From a consolidated body of research on sleep homeostasis, we would expect a change peaking in slow wave activity (1-4 Hz) following an intense meditation session. Here we compared these changes in sleep with the post-meditation changes in waking rest scalp power to further characterize their functional significance. High-density EEG recordings were acquired from 27 long-term meditators (LTM) on three separate days at baseline and following two 8-hr sessions of either mindfulness or compassion-and-loving-kindness meditation. Thirty-one meditation-naïve participants (MNP) were recorded at the same time points. As a common effect of meditation practice, we found increases in low and fast waking EEG oscillations for LTM only, peaking at eight and 15 Hz respectively, over prefrontal, and left centro-parietal electrodes. Paralleling our previous findings in sleep, there was no significant difference between meditation styles in LTM as well as no difference between matched sessions in MNP. Meditation-related changes in wakefulness and NREM sleep were correlated across space and frequency. A significant correlation was found in the EEG low frequencies (<12 Hz). Since the peak of coupling was observed in the theta-alpha oscillatory range, sleep homeostatic response to meditation practice is not sufficient to explain our findings. Another likely phenomenon into play is a reverberation of meditation-related processes during subsequent sleep. Future studies should ascertain the interplay between these processes in promoting the beneficial effects of meditation practice.


Assuntos
Encéfalo/fisiologia , Homeostase/fisiologia , Meditação/psicologia , Sono/fisiologia , Adulto , Idoso , Eletroencefalografia/psicologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Descanso/fisiologia , Vigília/fisiologia
8.
Curr Psychiatry Rep ; 18(8): 72, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27299655

RESUMO

Sleep spindles are wax and waning brain oscillations at a frequency range of 11-16 Hz, lasting 0.5-2 s, that define non-rapid eye movement sleep stage 2. Over the past few years, several independent studies pointed to a decrease of sleep spindles in schizophrenia. The aim of this review is to contextualize these findings within the growing literature on these oscillations across other neuro-psychiatric disorders. Indeed, spindles reflect the coordinated activity of thalamocortical networks, and their abnormality can be observed in a variety of conditions that disrupt local or global thalamocortical connectivity. Although the broad methodological variability across studies limits the possibility of drawing firm conclusions, impaired spindling activity has been observed in several neurodevelopmental and neurodegenerative disorders. Despite such lack of specificity, schizophrenia remains the only condition with a typical late adolescence to young adulthood onset in which impaired spindling has been consistently reported. Further research is necessary to clearly define the pathogenetic mechanisms that lead to this deficit and the validity of its widespread use as a clinical biomarker.


Assuntos
Encéfalo/fisiopatologia , Esquizofrenia/fisiopatologia , Fases do Sono/fisiologia , Adolescente , Adulto , Eletroencefalografia/estatística & dados numéricos , Humanos , Adulto Jovem
9.
Hum Brain Mapp ; 36(11): 4539-52, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26288380

RESUMO

BACKGROUND: Cognitive dysfunction is considered a core feature of schizophrenia, and impaired performances in episodic memory (EM) and executive function (EF) tasks are consistently reported in schizophrenia patients. Traditional fMRI and EEG studies have helped identifying brain areas, including the prefrontal cortex (PFC), involved in these tasks. However, it is unclear whether intrinsic defects in prefrontal function per se contribute to poor performance in schizophrenia, given the presence of confounds like reduced motivation and psychotic symptoms. TMS/hd-EEG measurements are obtained without cognitive effort, and can be calculated in any cortical area. METHODS: We performed TMS/hd-EEG recordings in parietal, motor, premotor, and PFC in healthy individuals (N=20) and schizophrenia patients (N=20). Source modeling of TMS-evoked responses was performed, and measures of cortical activity (significant current density, SCD) and connectivity (significant current scattering, SCS) were computed. Patients with schizophrenia also performed Penn Word memory delayed (CPWd) and Penn Conditional Exclusion Test (PCET). CPWd evaluates EM and involves primarily PFC, whereas PCET reflects EF and implicates PFC with other brain regions. FINDINGS: We found no difference in SCD and SCS after TMS of parietal/motor cortices, whereas those parameters were reduced in premotor/prefrontal areas in schizophrenia patients. In PFC, where these measures were most defective, SCD was negatively correlated with performance in CPWd whereas higher SCS values were associated with more errors in PCET. CONCLUSION: These findings indicate that schizophrenia patients have intrinsic defects in both activity and connectivity of PFC, and that these defects are specifically associated with impairments in cognitive abilities.


Assuntos
Transtornos Cognitivos/fisiopatologia , Eletroencefalografia/métodos , Rede Nervosa/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Desempenho Psicomotor/fisiologia , Esquizofrenia/fisiopatologia , Estimulação Magnética Transcraniana/métodos , Adulto , Transtornos Cognitivos/etiologia , Feminino , Humanos , Masculino , Esquizofrenia/complicações
10.
Neuroimage ; 102 Pt 2: 540-7, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25139002

RESUMO

BACKGROUND: We recently found marked deficits in sleep spindles, non-rapid eye movement (NREM) sleep oscillations that are generated within the thalamus and then amplified and sustained in the cortex, in patients with schizophrenia compared to both healthy and psychiatric controls. Here, we investigated the thalamic and cortical contributions to these sleep spindle deficits. METHODS: Anatomical volume of interest analysis (i.e., thalamic volumes) and electroencephalogram (EEG) source modeling (i.e., spindle-related cortical currents) were performed in patients with schizophrenia and healthy comparison subjects. FINDINGS: Schizophrenia patients had reduced mediodorsal (MD) thalamic volumes, especially on the left side, compared to healthy controls, whereas whole thalami and lateral geniculate nuclei did not differ between groups. Furthermore, left MD volumes were strongly correlated with the number of scalp-recorded spindles in an anterior frontal region, and cortical currents underlying these anterior frontal spindles were localized in the prefrontal cortex, in Brodmann area (BA) 10. Finally, prefrontal currents at the peak of spindle activity were significantly reduced in schizophrenia patients and correlated with their performance in an abstraction/working memory task. CONCLUSION: Altogether, these findings point to deficits in a specific thalamo-cortical circuitry in schizophrenia, which is associated with some cognitive deficits commonly reported in those patients.


Assuntos
Ondas Encefálicas , Núcleo Mediodorsal do Tálamo/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Esquizofrenia/fisiopatologia , Sono/fisiologia , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Núcleo Mediodorsal do Tálamo/patologia , Esquizofrenia/patologia
11.
Psychiatry Res ; 333: 115756, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281453

RESUMO

Individuals at clinical high risk for psychosis (CHR) present subsyndromal psychotic symptoms that can escalate and lead to the transition to a diagnosable psychotic disorder. Identifying biological parameters that are sensitive to these symptoms can therefore help objectively assess their severity and guide early interventions in CHR. Reduced slow wave oscillations (∼1 Hz) during non-rapid eye movement sleep were recently observed in first-episode psychosis patients and were linked to the intensity of their positive symptoms. Here, we collected overnight high-density EEG recordings from 37 CHR and 32 healthy control (HC) subjects and compared slow wave (SW) activity and other SW parameters (i.e., density and negative peak amplitude) between groups. We also assessed the relationships between clinical symptoms and SW parameters in CHR. While comparisons between HC and the entire CHR group showed no SW differences, CHR individuals with higher positive symptom severity (N = 18) demonstrated a reduction in SW density in an EEG cluster involving bilateral prefrontal, parietal, and right occipital regions compared to matched HC individuals. Furthermore, we observed a negative correlation between SW density and positive symptoms across CHR individuals, suggesting a potential target for early treatment interventions.


Assuntos
Transtornos Psicóticos , Humanos , Transtornos Psicóticos/diagnóstico , Sintomas Prodrômicos
12.
Sleep ; 47(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38416814

RESUMO

STUDY OBJECTIVES: Microstates are semi-stable voltage topographies that account for most of electroencephalogram (EEG) variance. However, the impact of time of the day and sleep on microstates has not been examined. To address this gap, we assessed whether microstates differed between the evening and morning and whether sleep slow waves correlated with microstate changes in healthy participants. METHODS: Forty-five healthy participants were recruited. Each participant underwent 6 minutes of resting state EEG recordings in the evening and morning, interleaved by sleep EEGs. Evening-to-morning changes in microstate duration, coverage, and occurrence were assessed. Furthermore, correlation between microstate changes and sleep slow-wave activity (SWA) and slow-wave density (SWD) were performed. RESULTS: Two-way ANOVAs with microstate class (A, B, C, and D) and time (evening and morning) revealed significant microstate class × time interaction for duration (F(44) = 5.571, p = 0.002), coverage (F(44) = 6.833, p = 0.001), and occurrence (F(44) = 5.715, p = 0.002). Post hoc comparisons showed significant effects for microstate C duration (padj = 0.048, Cohen's d = -0.389), coverage (padj = 0.002, Cohen's d = -0.580), and occurrence (padj = 0.002, Cohen's d = -0.606). Topographic analyses revealed inverse correlations between SWD, but not SWA, and evening-to-morning changes in microstate C duration (r = -0.51, padj = 0.002), coverage (r = -0.45, padj = 0.006), and occurrence (r = -0.38, padj = 0.033). CONCLUSIONS: Microstate characteristics showed significant evening-to-morning changes associated with, and possibly regulated by, sleep slow waves. These findings suggest that future microstate studies should control for time of day and sleep effects.


Assuntos
Eletroencefalografia , Sono de Ondas Lentas , Humanos , Masculino , Feminino , Eletroencefalografia/métodos , Adulto , Sono de Ondas Lentas/fisiologia , Adulto Jovem , Ritmo Circadiano/fisiologia , Fatores de Tempo , Voluntários Saudáveis , Sono/fisiologia , Polissonografia
13.
Artigo em Inglês | MEDLINE | ID: mdl-39059465

RESUMO

BACKGROUND: Abnormalities in dorsolateral prefrontal cortex (DLPFC) oscillations are neurophysiological signatures of schizophrenia thought to underlie its cognitive deficits. Transcranial magnetic stimulation with electroencephalography (TMS-EEG) provides a measure of cortical oscillations unaffected by sensory relay functionality and/or patients' level of engagement, which are important confounding factors in schizophrenia. Previous TMS-EEG work showed reduced fast, gamma-range oscillations and a slowing of the main DLPFC oscillatory frequency, or natural frequency, in chronic schizophrenia. However, it is unclear whether this DLPFC natural frequency slowing is present in early-course schizophrenia (EC-SCZ) and is associated with symptom severity and cognitive dysfunction. METHODS: We applied TMS-EEG to the left DLPFC in 30 EC-SCZ and 28 healthy control (HC) subjects. Goal-directed working memory performance was assessed using the "AX" Continuous Performance Task (AX-CPT). The EEG frequency with the highest cumulative power at the stimulation site, or natural frequency, was extracted. We also calculated the local Relative Spectral Power (RSP) as the average power in each frequency band divided by the broadband power. RESULTS: Compared to HC, EC-SCZ had reduced DLPFC natural frequency (p=0.0000002, Cohen's d=-2.32) and higher DLPFC beta-range RSP (p=0.0003, Cohen's d=0.77). In EC-SCZ, the DLPFC natural frequency was inversely associated with negative symptoms. Across all participants, the beta-band RSP negatively correlated with the AX-CPT performance. CONCLUSIONS: A DLPFC oscillatory slowing is an early pathophysiological biomarker of schizophrenia that is associated with its symptom severity and cognitive impairments. Future work should assess whether non-invasive neurostimulation can ameliorate prefrontal oscillatory deficits and related clinical functions in EC-SCZ.

14.
Behav Res Ther ; 174: 104493, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38350221

RESUMO

Depression is associated with diminished positive affect (PA), postulated to reflect frontostriatal reward circuitry disruptions. Depression has consistently been associated with higher dorsomedial prefrontal cortex (dmPFC) activation, a region that regulates PA through ventral striatum (VS) connections. Low PA in depression may reflect dmPFC's aberrant functional connectivity (FC) with the VS. To test this, we applied theta burst stimulation (TBS) to dmPFC in 29 adults with depression (79% female, Mage = 21.4, SD = 2.04). Using a randomized, counterbalanced design, we administered 3 types of TBS at different sessions: intermittent (iTBS; potentiating), continuous (cTBS; depotentiating), and sham TBS (control). We used neuronavigation to target personalized dmPFC targets based on VS-dmPFC FC. PA and negative affect (NA), and resting-state fMRI were collected pre- and post-TBS. We found no changes in PA or NA with time (pre/post), condition (iTBS, cTBS, sham), or their interaction. Functional connectivity (FC) between the nucleus accumbens and dmPFC showed a significant condition (cTBS, iTBS, and sham) by time (pre-vs. post-TBS) interaction, and post-hoc testing showed decreased pre-to post-TBS for cTBS but not iTBS or sham. For cTBS only, reduced FC pre/post stimulation was associated with increased PA (but not NA). Our findings lend support to the proposed mechanistic model of aberrant FC between the dmPFC and VS in depression and suggest a way forward for treating depression in young adults. Future studies need to evaluate multi-session TBS to test clinical effects.


Assuntos
Depressão , Estimulação Magnética Transcraniana , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Depressão/terapia , Imageamento por Ressonância Magnética , Córtex Pré-Frontal/fisiologia
15.
Brain Sci ; 14(7)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39061410

RESUMO

Deficits in memory performance have been linked to a wide range of neurological and neuropsychiatric conditions. While many studies have assessed the memory impacts of individual conditions, this study considers a broader perspective by evaluating how memory recall is differentially associated with nine common neuropsychiatric conditions using data drawn from 55 international studies, aggregating 15,883 unique participants aged 15-90. The effects of dementia, mild cognitive impairment, Parkinson's disease, traumatic brain injury, stroke, depression, attention-deficit/hyperactivity disorder (ADHD), schizophrenia, and bipolar disorder on immediate, short-, and long-delay verbal learning and memory (VLM) scores were estimated relative to matched healthy individuals. Random forest models identified age, years of education, and site as important VLM covariates. A Bayesian harmonization approach was used to isolate and remove site effects. Regression estimated the adjusted association of each clinical group with VLM scores. Memory deficits were strongly associated with dementia and schizophrenia (p < 0.001), while neither depression nor ADHD showed consistent associations with VLM scores (p > 0.05). Differences associated with clinical conditions were larger for longer delayed recall duration items. By comparing VLM across clinical conditions, this study provides a foundation for enhanced diagnostic precision and offers new insights into disease management of comorbid disorders.

16.
Int J Neuropsychopharmacol ; 16(2): 301-11, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22676966

RESUMO

The N-methyl-d-aspartate (NMDA) receptor antagonist ketamine has rapid antidepressant effects in treatment-resistant major depressive disorder (MDD). In rats, ketamine selectively increased electroencephalogram (EEG) slow wave activity (SWA) during non-rapid eye movement (REM) sleep and altered central brain-derived neurotrophic factor (BDNF) expression. Taken together, these findings suggest that higher SWA and BDNF levels may respectively represent electrophysiological and molecular correlates of mood improvement following ketamine treatment. This study investigated the acute effects of a single ketamine infusion on depressive symptoms, EEG SWA, individual slow wave parameters (surrogate markers of central synaptic plasticity) and plasma BDNF (a peripheral marker of plasticity) in 30 patients with treatment-resistant MDD. Montgomery-Åsberg Depression Rating Scale scores rapidly decreased following ketamine. Compared to baseline, BDNF levels and early sleep SWA (during the first non-REM episode) increased after ketamine. The occurrence of high amplitude waves increased during early sleep, accompanied by an increase in slow wave slope, consistent with increased synaptic strength. Changes in BDNF levels were proportional to changes in EEG parameters. Intriguingly, this link was present only in patients who responded to ketamine treatment, suggesting that enhanced synaptic plasticity - as reflected by increased SWA, individual slow wave parameters and plasma BDNF - is part of the physiological mechanism underlying the rapid antidepressant effects of NMDA antagonists. Further studies are required to confirm the link found here between behavioural and synaptic changes, as well as to test the reliability of these central and peripheral biomarkers of rapid antidepressant response.


Assuntos
Ondas Encefálicas/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/sangue , Transtorno Depressivo Maior/tratamento farmacológico , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Ketamina/uso terapêutico , Fases do Sono/efeitos dos fármacos , Adulto , Análise de Variância , Transtorno Depressivo Maior/sangue , Eletroencefalografia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Escalas de Graduação Psiquiátrica , Riluzol/uso terapêutico , Método Simples-Cego , Estatística como Assunto , Fatores de Tempo
17.
Proc Natl Acad Sci U S A ; 107(6): 2681-6, 2010 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-20133802

RESUMO

By employing transcranial magnetic stimulation (TMS) in combination with high-density electroencephalography (EEG), we recently reported that cortical effective connectivity is disrupted during early non-rapid eye movement (NREM) sleep. This is a time when subjects, if awakened, may report little or no conscious content. We hypothesized that a similar breakdown of cortical effective connectivity may underlie loss of consciousness (LOC) induced by pharmacologic agents. Here, we tested this hypothesis by comparing EEG responses to TMS during wakefulness and LOC induced by the benzodiazepine midazolam. Unlike spontaneous sleep states, a subject's level of vigilance can be monitored repeatedly during pharmacological LOC. We found that, unlike during wakefulness, wherein TMS triggered responses in multiple cortical areas lasting for >300 ms, during midazolam-induced LOC, TMS-evoked activity was local and of shorter duration. Furthermore, a measure of the propagation of evoked cortical currents (significant current scattering, SCS) could reliably discriminate between consciousness and LOC. These results resemble those observed in early NREM sleep and suggest that a breakdown of cortical effective connectivity may be a common feature of conditions characterized by LOC. Moreover, these results suggest that it might be possible to use TMS-EEG to assess consciousness during anesthesia and in pathological conditions, such as coma, vegetative state, and minimally conscious state.


Assuntos
Córtex Cerebral/fisiologia , Sono/fisiologia , Inconsciência/fisiopatologia , Adulto , Anestésicos Intravenosos/administração & dosagem , Mapeamento Encefálico , Córtex Cerebral/anatomia & histologia , Eletroencefalografia , Potencial Evocado Motor/fisiologia , Humanos , Infusões Intravenosas , Masculino , Midazolam/administração & dosagem , Estimulação Magnética Transcraniana , Inconsciência/induzido quimicamente , Vigília/fisiologia , Adulto Jovem
18.
Int Clin Psychopharmacol ; 38(3): 187-188, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36866853

RESUMO

Sleep disturbance is commonly reported in patients with schizophrenia spectrum disorder (SSD) in the clinical setting. Sleep features can be assessed subjectively, with self-report sleep questionnaires, and objectively with actigraphy and electroencephalogram recordings. Traditionally, electroencephalogram studies have focused on sleep architecture. More recently, numerous studies have investigated alterations in sleep-specific rhythms, including electroencephalogram oscillations, such as sleep spindles and slow waves, in patients with SSD compared with control subjects. Here, I briefly discuss how sleep disturbance is highly prevalent in patients with SSD and I present findings from studies demonstrating abnormalities in sleep architecture and sleep-oscillatory rhythms, with an emphasis on sleep spindles and slow-wave deficits, in these patients. This increasing body of evidence highlights the importance of sleep disturbance in SSD and points to several future research directions with related clinical implications, thus showing that sleep disturbance is more than just a symptom in these patients.


Assuntos
Esquizofrenia , Transtornos do Sono-Vigília , Humanos , Esquizofrenia/complicações , Esquizofrenia/diagnóstico , Sono , Eletroencefalografia , Transtornos do Sono-Vigília/diagnóstico , Autorrelato
19.
Adv Biol (Weinh) ; 7(11): e2200237, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36403250

RESUMO

Disruptions in circadian rhythms can occur in healthy aging; however, these changes are more severe and pervasive in individuals with age-related and neurodegenerative diseases, such as dementia. Circadian rhythm alterations are also present in preclinical stages of dementia, for example, in patients with mild cognitive impairments (MCI); thus, providing a unique window of opportunity for early intervention in neurodegenerative disorders. Nonetheless, there is a lack of studies examining the association between relevant changes in circadian rhythms and their relationship with cognitive dysfunctions in MCI individuals. In this review, circadian system alterations occurring in MCI patients are examined compared to healthy aging individuals while also considering their association with MCI neurocognitive alterations. The main findings are that abnormal circadian changes in rest-activity, core body temperature, melatonin, and cortisol rhythms appear in the MCI stage and that these circadian rhythm disruptions are associated with some of the neurocognitive deficits observed in MCI patients. In addition, preliminary evidence indicates that interventions aimed at restoring regular circadian rhythms may prevent or halt the progress of neurodegenerative diseases and mitigate their related cognitive impairments. Future longitudinal studies with repeated follow-up assessments are needed to establish the translational potential of these findings in clinical practice.


Assuntos
Disfunção Cognitiva , Demência , Envelhecimento Saudável , Doenças Neurodegenerativas , Humanos , Ritmo Circadiano
20.
JAMA Psychiatry ; 80(3): 202-210, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36652243

RESUMO

Importance: Abnormal sleep is frequent in psychosis; however, sleep abnormalities in different stages (ie, clinical high risk for psychosis [CHR-P], early psychosis [EP], and chronic psychosis [CP]) have not been characterized. Objective: To identify sleep abnormalities across psychosis stages. Data Sources: Web of Science and PubMed were searched between inception and June 15, 2022. Studies written in English were included. Study Selection: Sleep disturbance prevalence studies and case-control studies reporting sleep quality, sleep architecture, or sleep electroencephalography oscillations in CHR-P, EP, or CP. Data Extraction and Synthesis: This systematic review and meta-analysis followed Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline. Stage-specific and pooled random-effects meta-analyses were conducted, along with the assessment of heterogeneity, study quality, and meta-regressions (clinical stage, sex, age, medication status, and psychotic symptoms). Main Outcomes and Measures: Sleep disturbance prevalence, self-reported sleep quality, sleep architecture (total sleep time, sleep latency, sleep efficiency, nonrapid eye movement, rapid eye movement stages, and number of arousals), and sleep electroencephalography oscillations (spindle density, amplitude, and duration, and slow wave density). Results: Fifty-nine studies with up to 6710 patients (n = 5135 for prevalence) and 977 controls were included. Sleep disturbance prevalence in pooled cases was 50% (95% CI, 40%-61%) and it was similar in each psychosis stage. Sleep quality was worse in pooled cases vs controls (standardized mean difference [SMD], 1.00 [95% CI, 0.70-1.30]). Sleep architecture alterations included higher sleep onset latency (SMD [95% CI]: pooled cases, 0.96 [0.62-1.30]; EP, 0.72 [0.52-0.92]; CP, 1.36 [0.66-2.05]), higher wake after sleep onset (SMD [95% CI]: pooled cases, 0.5 [0.29-0.71]; EP, 0.62 [0.34-0.89]; CP, 0.51 [0.09-0.93]), higher number of arousals (SMD [95% CI]: pooled cases, 0.45 [0.07-0.83]; CP, 0.81 [0.30-1.32]), higher stage 1 sleep (SMD [95% CI]: pooled cases, 0.23 [0.06-0.40]; EP, 0.34 [0.15-0.53]), lower sleep efficiency (SMD [95% CI]: pooled cases, -0.75 [-0.98 to -0.52]; EP, -0.90 [-1.20 to -0.60]; CP, -0.73 [-1.14 to -0.33]), and lower rapid eye movement density (SMD [95% CI]: pooled cases, 0.37 [0.14-0.60]; CP, 0.4 [0.19-0.77]). Spindle parameter deficits included density (SMD [95% CI]: pooled cases, -1.06 [-1.50 to -0.63]; EP, -0.80 [-1.22 to -0.39]; CP, -1.39 [-2.05 to -0.74]; amplitude: pooled cases, -1.08 [-1.33 to -0.82]; EP, -0.86 [-1.24 to -0.47]; CP, -1.25 [-1.58 to -0.91]; and duration: pooled cases: -1.2 [-1.69 to -0.73]; EP, -0.71 [-1.08 to -0.34]; CP, -1.74 [-2.10 to -1.38]). Individuals with CP had more frequent arousals vs CHR-P (z = 2.24, P = .02) and reduced spindle duration vs EP (z = -3.91, P < .001). Conclusions and Relevance: In this systematic review and meta-analysis, sleep disturbances were found to be prevalent throughout the course of psychosis, and different psychosis stages showed both shared and distinct abnormalities in sleep quality, architecture, and spindles. These findings suggest that sleep should become a core clinical target and research domain from at-risk to early and chronic stages of psychosis.


Assuntos
Transtornos Psicóticos , Transtornos do Sono-Vigília , Humanos , Sono , Estudos de Casos e Controles
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa