Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acc Chem Res ; 54(5): 1067-1079, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33554606

RESUMO

ConspectusLaboratory-based experimental astrochemistry regularly entails simulation of astrophysical environments whereby low-temperature condensed ices are exposed to radiation from ultraviolet (UV) photons or energetic charged particles. Here, excited atoms/radicals are generated that are not in thermal equilibrium with their surroundings (i.e., they are nonthermal, or suprathermal). These species can surpass typical reaction barriers and partake in unusual chemical processes leading to novel molecular species. Often, these are uniquely observable under low-temperature conditions where the surrounding ice matrix can stabilize excited intermediates that would otherwise fall apart. Fourier-transform infrared (FTIR) spectroscopy is traditionally utilized to monitor the evolution of chemical species within ices in situ during radiolysis. Yet, the characterization and quantification of novel species and radicals formed within astrophysical ices is often hindered since many of these cannot be synthesized by traditional synthetic chemistry. Computational approaches can provide fundamental vibrational frequencies and isotopic shifts to help aid in assignments alongside infrared intensities and Raman activities to quantify levels of production. In this Account, we begin with a brief history and background regarding the composition and radiation of interstellar ices. We review details of some of the early work on carbon oxides produced during the radiolysis of pure carbon dioxide ices and contention around the carrier of an absorption feature that could potentially be a product of radiation. We then provide an overview of current and emerging experimental methodologies and some of the chemistries that occur via nonthermal processes during radiolysis of low-temperature ices. Next, we detail computational approaches to reliably predict vibrational frequencies, infrared intensities, and Raman activities based on our recent work. Our focus then turns to studies on the formation of complex organics and carbon oxides, highlighting those aided by computational approaches and their role in astrochemistry. Some recent controversies regarding assignments alongside our recent results on the characterization of novel carbon oxide species are discussed. We present an argument for the potential role of carbon oxides within cometary ices as parent molecular species for small volatiles. We provide an overview of some of the complex organic species that can be formed within interstellar and cometary ices that contain either carbon monoxide or carbon dioxide. We examine how Raman spectroscopy could potentially be leveraged to help determine and characterize carbon oxides in future experiments as well as how computational approaches can aid in these assignments. We conclude with brief remarks on future directions our research group is taking to unravel astrochemically relevant carbon oxides using combined computational and experimental approaches.

2.
ACS Earth Space Chem ; 7(7): 1423-1432, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37492630

RESUMO

In the interstellar medium, six molecules have been conclusively detected in the solid state in interstellar ices, and a few dozen have been hypothesized and modeled to be present in the solid state as well. The icy mantles covering micrometer-sized dust grains are, in fact, thought to be at the core of complex molecule formation as a consequence of the local high density of molecules that are simultaneously adsorbed. From a structural perspective, the icy mantle is considered to be layered, with an amorphous water-rich inner layer surrounding the dust grain, covered by an amorphous CO-rich outer layer. Moreover, recent studies have suggested that the CO-rich layer might be crystalline and possibly even be segregated as a single crystal atop the ice mantle. If so, there are far-reaching consequences for the formation of more complex organic molecules, such as methanol and sugars, that use CO as a backbone. Validation of these claims requires further investigation, in particular on acquiring atomistic insight into surface processes, such as adsorption, diffusion, and reactivity on CO ices. Here, we present the first detailed computational study toward treating the weak interaction of (pure) CO ices. We provide a benchmark of the performance of various density functional theory methods in treating the binding of pure CO ices. Furthermore, we perform an atomistic and in-depth study of the binding energy of CO on amorphous and crystalline CO ices using a pair-potential-based force field. We find that CO adsorption is represented by a large distribution of binding energies (200-1600 K) on amorphous CO, including a significant amount of weak binding sites (<350 K). Increasing both the cluster size and the number of neighbors increases the mean of the observed binding energy distribution. Finally, we find that CO binding energies are dominated by dispersion and, as such, exchange-correlation functionals need to include a treatment of dispersion to accurately simulate surface processes on CO ices. In particular, we find the ωB97M-V functional to be a strong candidate for such simulations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa