Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Parasitol ; 255: 108653, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951390

RESUMO

The common bed bug Cimex lectularius (Linnaeus 1758) is an ectoparasite that feeds preferably on human blood, being considered an important public health issue. Blood-feeding is a challenging process for hematophagous organisms, and one of the inherent risks with this kind of diet is the liberation of high doses of free heme after the digestion of hemoglobin. In order to deal with this potent cytotoxic agent, such organisms have acquired different defense mechanisms. Here, we use UV-visible spectrophotometry and infrared spectroscopy to show that C. lectularius crystalizes free heme to form the much less dangerous compound, hemozoin. According to our results, the peak of formation of hemozoin in the intestinal contents occurred 4-5 days after the blood meal, primarily in the posterior midgut. The quantification of the rate of conversion of heme to hemozoin revealed that at the end of digestion all the heme was in the form of hemozoin. Inhibition of the synthesis of hemozoin using the anti-malarial drug quinine led to an increase in both catalase activity in the intestinal epithelium and the mortality of the bed bugs, indicating that the insects were unable to cope with the oxidative stress generated by the overload of free heme. The data presented here show for the first time how C. lectularius deals with free heme, and how the process of formation of hemozoin is essential for the survival of these insects. Since resistance to insecticides is a common feature among field populations of bed bugs, there is an urgent need to develop alternative control methods. Thus, targeting the synthesis of hemozoin emerges as a possible novel strategy to fight bed bugs.


Assuntos
Percevejos-de-Cama , Ectoparasitoses , Hemeproteínas , Inseticidas , Animais , Humanos , Percevejos-de-Cama/fisiologia , Heme , Inseticidas/farmacologia
2.
Insect Biochem Mol Biol ; 139: 103650, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34571142

RESUMO

Culex quinquefasciatus is a mosquito species with an anthropophilic habit, often associated with areas with poor sanitation in tropical and urban regions. Adult males and females feed on sugars but only females feed on blood in natural conditions for egg maturation. During haematophagy, female C. quinquefasciatus transmit pathogens such as the West Nile virus, Oropouche virus, various encephalitis viruses, and Wuchereria bancrofti to human hosts. It has been observed in laboratory conditions that male C. quinquefasciatus may feed on blood during an artificial feed. Experiments were carried out to understand how males and females of this species deal with human complement activation. Our results showed that female C. quinquefasciatus, but not males, withstand the stress caused by the ingestion of normal human serum. It was observed that the salivary gland extracts from female mosquitoes were able to inhibit the classical and lectin pathways, whereas male salivary gland extracts only inhibited the lectin pathway. The male and female intestinal contents inhibited the classical and lectin pathways. Neither the salivary glands nor the intestinal contents from males and females showed inhibitory activity towards the alternative pathway. However, the guts of male and female C. quinquefasciatus captured factor H from the human serum, permitting C3b inactivation to its inactive form iC3b, and preventing the formation of the C3 convertase. The activity of the antioxidant enzyme catalase is similar in C. quinquefasciatus females and males. This article shows for the first time that males from a haematophagous arthropod species present human anti-complement activity in their salivary gland extracts and gut contents. The finding of an activity that helps to protect the damage caused by blood ingestion in sugar-feeding male mosquitoes suggests that this may be a pre-adaptation to blood-feeding.


Assuntos
Adaptação Fisiológica/imunologia , Ativação do Complemento , Culex/imunologia , Animais , Dieta , Comportamento Alimentar , Feminino , Humanos , Masculino
3.
Insect Biochem Mol Biol ; 122: 103393, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32360958

RESUMO

In sandflies, males and females feed on carbohydrates but females must get a blood meal for egg maturation. Using artificial blood meals, this study aimed to understand how galactosamine interferes with sandfly digestive physiology. We also used galactosamine to manipulate the digestive physiology of Lutzomyia longipalpis to investigate its influence on sandfly digestion and Leishmania development within their insect vectors. Galactosamine was capable to reduce Lu. longipalpis trypsinolytic activity in a dose-dependent manner. This effect was specific to galactosamine as other similar sugars were not able to affect sandfly trypsin production. An excess of amino acids supplemented with the blood meal and 15 mM galactosamine was able to abrogate the reduction of the trypsinolytic activity caused by galactosamine, suggesting this phenomenon may be related to an impairment of amino acid detection by sandfly enterocytes. The TOR inhibitor rapamycin reduces trypsin activity in the L. longipalpis midgut. Galactosamine reduces the phosphorylation of the TOR pathway repressor 4EBP, downregulating TOR activity in the gut of L. longipalpis. Galactosamine reduces sandfly oviposition, causes an impact on sandfly longevity and specifically reduces sandfly gut proteases whereas increasing α-glycosidase activity. The administration of 15 and 30 mM galactosamine increased the number of promastigote forms of Le. mexicana and Le. infantum in galactosamine-treated L. longipalpis. Our results showed that galactosamine influences amino acid sensing, reduces sandfly gut protease activity through TOR downregulation, and benefits Leishmania growth within the Lu. longipalpis gut.


Assuntos
Galactosamina/administração & dosagem , Proteínas de Insetos/metabolismo , Leishmania/fisiologia , Peptídeo Hidrolases/metabolismo , Psychodidae/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Regulação para Baixo , Feminino , Galactosamina/farmacologia , Trato Gastrointestinal/parasitologia , Trato Gastrointestinal/fisiologia , Psychodidae/enzimologia , Psychodidae/parasitologia
4.
Insect Biochem Mol Biol ; 120: 103338, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32126277

RESUMO

Aedes aegypti is the main urban vector of dengue virus, chikungunya virus and Zika virus due to its great dispersal capacity and virus susceptibility. A. aegypti feed on plant-derived sugars but females need a blood meal for egg maturation. Haematophagous arthropods need to overcome host haemostasis and local immune reactions in order to take a blood meal. In this context, molecules present in the saliva and/or intestinal contents of these arthropods must contain inhibitors of the complement system (CS). CS salivary and/or intestinal inhibitors are crucial to protect gut cells of haematophagous arthropods against complement attack. The present work aimed to investigate the anti-complement activity of A. aegypti intestinal contents on the alternative, classical and lectin pathways of the human complement system. Here we show that A. aegypti gut contents inhibited the human classical and the lectin pathways but not the alternative pathway. The A. aegypti gut content has a serine protease able to specifically cleave and inactivate human C4, which is a novel mechanism for human complement inactivation in haematophagous arthropods. The gut of female A. aegypti was capable of capturing human serum factor H (a negative complement modulator), unlike males. C3 molecules in recently blood-fed female A. aegypti remain in their original state, being inactivated to iC3b soon after a blood feed. A transmission-blocking vaccine using these complement inhibitory proteins as antigens has the potential to interfere with the insect's survival, reproductive fitness and block their infection by the arboviruses they transmit to humans.


Assuntos
Aedes/fisiologia , Febre de Chikungunya/prevenção & controle , Proteínas Inativadoras do Complemento/metabolismo , Dengue/prevenção & controle , Microbioma Gastrointestinal/fisiologia , Infecção por Zika virus/prevenção & controle , Aedes/microbiologia , América , Animais , Vírus Chikungunya/fisiologia , Vírus da Dengue/fisiologia , Feminino , Masculino , Mosquitos Vetores/microbiologia , Mosquitos Vetores/fisiologia , Zika virus/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa