Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Am J Physiol Renal Physiol ; 326(1): F152-F164, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37969102

RESUMO

As miR-137 is a regulator of aquaporin (AQP)2 expression and tumor necrosis factor (TNF) inhibits the expression of several extrarenal AQPs, we tested the hypothesis that TNF inhibits AQP2 in the kidney via a miR-137-dependent mechanism. AQP2 mRNA and protein expression decreased ∼70% and 53%, respectively, in primary renal inner medullary collecting duct (IMCD) cells transfected with a miRNA mimic of mmu-miR-137, suggesting that miR-137 directly targets AQP2 mRNA in these cells. Exposure of IMCD cells for 2 h to 400 mosmol/kgH2O medium increased mmu-miR-137 mRNA expression about twofold, conditions that also increased TNF production approximately fourfold. To determine if the increase in mmu-miR-137 mRNA expression was related to the concomitant increase in TNF, IMCD cells were transfected with a lentivirus construct to silence TNF. This construct decreased mmu-miR-137 mRNA expression by ∼63%, suggesting that TNF upregulates the expression of miR-137. Levels of miR-137 also increased approximately twofold in IMCD tubules isolated from male mice given 1% NaCl in the drinking water for 3 days. Intrarenal lentivirus silencing of TNF increased AQP2 mRNA levels and protein expression concomitant with a decrease in miR-137 levels in tubules isolated from mice given NaCl. The changes in AQP2 expression levels affected the diluting ability of the kidney, which was assessed by measuring urine osmolality and urine volume, as the decrease in these parameters after renal silencing of TNF was prevented on intrarenal administration of miR-137. The study reveals a novel TNF function via a miR-137-dependent mechanism that regulates AQP2 expression and function.NEW & NOTEWORTHY An emerging intratubular tumor necrosis factor system, functioning during normotensive noninflammatory conditions, acts as a breaking mechanism that attenuates both the increases in Na+-K+-2Cl- cotransporter and aquaporin-2 induced by arginine vasopressin, thereby contributing to the regulation of electrolyte balance and blood pressure. A greater appreciation for the role of cytokines as mediators of immunophysiological responses may help reveal the relationship between the immune system and other physiological systems.


Assuntos
Aquaporinas , Túbulos Renais Coletores , MicroRNAs , Camundongos , Masculino , Animais , Aquaporina 2/genética , Aquaporina 2/metabolismo , Cloreto de Sódio/metabolismo , Túbulos Renais Coletores/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Aquaporinas/metabolismo
2.
J Biol Chem ; 295(32): 11068-11081, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32540969

RESUMO

The human cytochrome P450 family 11 subfamily B member 2 (hCYP11B2) gene encodes aldosterone synthase, the rate-limiting enzyme in the biosynthesis of aldosterone. In some humans, hCYP11B2 undergoes a unique intron conversion whose function is largely unclear. The intron conversion is formed by a replacement of the segment of DNA within intron 2 of hCYP11B2 with the corresponding region of the hCYP11B1 gene. We show here that the intron conversion is located in an open chromatin form and binds more strongly to the transcriptional regulators histone acetyltransferase P300 (p300), NFκB, and CCAAT enhancer-binding protein α (CEBPα). Reporter constructs containing the intron conversion had increased promoter activity on transient transfection in H295R cells compared with WT intron 2. We generated humanized transgenic (TG) mice containing all the introns, exons, and 5'- and 3'-flanking regions of the hCYP11B2 gene containing either the intron conversion or WT intron 2. We found that TG mice containing the intron conversion have (a) increased plasma aldosterone levels, (b) increased hCYP11B2 mRNA and protein levels, and (c) increased blood pressure compared with TG mice containing WT intron 2. Results of a ChIP assay showed that chromatin obtained from the adrenals of TG mice containing the intron conversion binds more strongly to p300, NFκB, and CEBPα than to WT intron 2. These results uncover a functional role of intron conversion in hCYP11B2 and suggest a new paradigm in blood pressure regulation.


Assuntos
Pressão Sanguínea/genética , Citocromo P-450 CYP11B2/genética , Íntrons , Transcrição Gênica/genética , Aldosterona/sangue , Animais , Citocromo P-450 CYP11B2/metabolismo , Genes Reporter , Humanos , Camundongos , Camundongos Transgênicos , RNA Mensageiro/genética
3.
Am J Physiol Renal Physiol ; 320(6): F1159-F1164, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33969695

RESUMO

Although administration of hypertonic saline (HSS) in combination with diuretics has yielded improved weight loss, preservation of renal function, and reduction in hospitalization time in the clinical setting of patients with acute decompensated heart failure (ADHF), the mechanisms that underlie these beneficial effects remain unclear and additional studies are needed before this approach can be adopted on a more consistent basis. As high salt conditions stimulate the production of several renal autacoids that exhibit natriuretic effects, renal physiologists can contribute to the understanding of mechanisms by which HSS leads to increased diuresis both as an individual therapy as well as in combination with loop diuretics. For instance, since HSS increases TNF-α production by proximal tubule and thick ascending limb of Henle's loop epithelial cells, this article is aimed at highlighting how the effects of TNF-α produced by these cell types may contribute to the beneficial effects of HSS in patients with ADHF. Although TNF-α produced by infiltrating macrophages and T cells exacerbates and attenuates renal damage, respectively, production of this cytokine within the tubular compartment of the kidney functions as an intrinsic regulator of blood pressure and Na+ homeostasis via mechanisms along the nephron related to inhibition of Na+-K+-2Cl- cotransporter isoform 2 activity and angiotensinogen expression. Thus, in the clinical setting of ADHF and hyponatremia, induction of TNF-α production along the nephron by administration of HSS may attenuate Na+-K+-2Cl- cotransporter isoform 2 activity and angiotensinogen expression as part of a mechanism that prevents excessive Na+ reabsorption in the thick ascending limb of Henle's loop, thereby mitigating volume overload.


Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Solução Salina Hipertônica/farmacologia , Fator de Necrose Tumoral alfa/agonistas , Diuréticos/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/genética , Membro 1 da Família 12 de Carreador de Soluto/metabolismo
4.
Am J Physiol Renal Physiol ; 318(1): F273-F282, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31813248

RESUMO

We have previously shown that TNF-α produced by renal epithelial cells inhibits Na+-K+-2Cl- cotransporter (NKCC2) activity as part of a mechanism that attenuates increases in blood pressure in response to high NaCl intake. As the role of TNF-α in the kidney is still being defined, the effects of low salt intake on TNF-α and NKCC2B expression were determined. Mice given a low-salt (0.02% NaCl) diet (LSD) for 7 days exhibited a 62 ± 7.4% decrease in TNF-α mRNA accumulation in the renal cortex. Mice that ingested the LSD also exhibited an ~63% increase in phosphorylated NKCC2 expression in the cortical thick ascending limb of Henle's loop and a concomitant threefold increase in NKCC2B mRNA abundance without a concurrent change in NKCC2A mRNA accumulation. NKCC2B mRNA levels increased fivefold in mice that ingested the LSD and also received an intrarenal injection of a lentivirus construct that specifically silenced TNF-α in the kidney (U6-TNF-ex4) compared with mice injected with control lentivirus. Administration of a single intrarenal injection of murine recombinant TNF-α (5 ng/g body wt) attenuated the increases of NKCC2B mRNA by ~50% and inhibited the increase in phosphorylated NKCC2 by ~54% in the renal cortex of mice given the LSD for 7 days. Renal silencing of TNF-α decreased urine volume and NaCl excretion in mice given the LSD, effects that were reversed when NKCC2B was silenced in the kidney. Collectively, these findings demonstrate that downregulation of renal TNF-α production in response to low-salt conditions contributes to the regulation of NaCl reabsorption via an NKCC2B-dependent mechanism.


Assuntos
Dieta Hipossódica , Córtex Renal/metabolismo , Cloreto de Sódio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Pressão Sanguínea/fisiologia , Técnicas de Silenciamento de Genes , Alça do Néfron/metabolismo , Camundongos , Fosforilação , Membro 1 da Família 12 de Carreador de Soluto/genética , Fator de Necrose Tumoral alfa/genética
5.
Physiol Genomics ; 50(11): 964-972, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30216136

RESUMO

Previously, our comprehensive cardiovascular characterization study validated Uromodulin as a blood pressure gene. Uromodulin is a glycoprotein exclusively synthesized at the thick ascending limb of the loop of Henle and is encoded by the Umod gene. Umod-/- mice have significantly lower blood pressure than Umod+/+ mice, are resistant to salt-induced changes in blood pressure, and show a leftward shift in pressure-natriuresis curves reflecting changes of sodium reabsorption. Salt stress triggers transcription factors and genes that alter renal sodium reabsorption. To date there are no studies on renal transcriptome responses to salt stress. Here we aimed use RNA-Seq to delineate salt stress pathways in tubules isolated from Umod+/+ mice (a model of sodium retention) and Umod-/- mice (a model of sodium depletion) ± 300 mosmol sodium chloride ( n = 3 per group). In response to salt stress, the tubules of Umod+/+ mice displayed an upregulation of heat shock transcripts. The greatest changes occurred in the expression of: Hspa1a (Log2 fold change 4.35, P = 2.48 e-12) and Hspa1b (Log2 fold change 4.05, P = 2.48 e-12). This response was absent in tubules of Umod-/- mice. Interestingly, seven of the genes discordantly expressed in the Umod-/- tubules were electrolyte transporters. Our results are the first to show that salt stress in renal tubules alters the transcriptome, increasing the expression of heat shock genes. This direction of effect in Umod+/+ tubules suggest the difference is due to the presence of Umod facilitating greater sodium entry into the tubule cell reflecting a specific response to salt stress.


Assuntos
Resposta ao Choque Térmico/genética , Túbulos Renais/fisiologia , Estresse Salino/genética , Uromodulina/genética , Animais , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Alça do Néfron/fisiologia , Masculino , Camundongos Mutantes , Regulação para Cima
6.
Physiol Genomics ; 49(5): 261-276, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28389525

RESUMO

Hypertension (HTN), a major public health issue is currently the leading factor in the global burden of disease, where associated complications account for 9.4 million deaths worldwide every year. Excessive dietary salt intake is among the environmental factors that contribute to HTN, known as salt sensitivity. The heterogeneity of salt sensitivity and the multiple mechanisms that link high salt intake to increases in blood pressure are of upmost importance for therapeutic application. A continual increase in the kidney's reabsorption of sodium (Na+) relies on sequential actions at various segments along the nephron. When the distal segments of the nephron fail to regulate Na+, the effects on Na+ homeostasis are unfavorable. We propose that the specific nephron region where increased active uptake occurs as a result of variations in Na+ reabsorption is at the thick ascending limb of the loop of Henle (TAL). The purpose of this review is to urge the consideration of the TAL as contributing to the pathophysiology of salt-sensitive HTN. Further research in this area will enable development of a therapeutic application for targeted treatment.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Pressão Sanguínea/fisiologia , Proteínas de Transporte de Cátions/metabolismo , Hipertensão/fisiopatologia , Alça do Néfron/fisiologia , Animais , Proteínas de Transporte de Ânions/genética , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Humanos , Alça do Néfron/anatomia & histologia , Alça do Néfron/fisiopatologia , Trocador 3 de Sódio-Hidrogênio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Uromodulina/química , Uromodulina/metabolismo
7.
Am J Physiol Renal Physiol ; 311(4): F822-F829, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27465993

RESUMO

The mechanisms by which prostanoids contribute to the maintenance of whole body water homeostasis are complex and not fully understood. The present study demonstrates that an EP3-dependent feedback mechanism contributes to the regulation of water homeostasis under high-salt conditions. Rats on a normal diet and tap water were placed in metabolic cages and given either sulprostone (20 µg·kg-1·day-1) or vehicle for 3 days to activate EP3 receptors in the thick ascending limb (TAL). Treatment was continued for another 3 days in rats given either 1% NaCl in the drinking water or tap water. Sulprostone decreased expression of cyclooxygenase 2 (COX-2) expression by ∼75% in TAL tubules from rats given 1% NaCl concomitant with a ∼60% inhibition of COX-2-dependent PGE2 levels in the kidney. Urine volume increased after ingestion of 1% NaCl but was reduced ∼40% by sulprostone. In contrast, the highly selective EP3 receptor antagonist L-798106 (100 µg·kg-1·day-1), which increased COX-2 expression and renal PGE2 production, increased urine volume in rats given 1% NaCl. Sulprostone increased expression of aquaporin-2 (AQP2) in the inner medullary collecting duct plasma membrane in association with an increase in phosphorylation at Ser269 and decrease in Ser261 phosphorylation; antagonism of EP3 with L-798106 reduced AQP2 expression. Thus, although acute activation of EP3 by PGE2 in the TAL and collecting duct inhibits the Na-K-2Cl cotransporter and AQP2 activity, respectively, chronic activation of EP3 in vivo limits the extent of COX-2-derived PGE2 synthesis, thereby mitigating the inhibitory effects of PGE2 on these transporters and decreasing urine volume.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Retroalimentação Fisiológica/fisiologia , Rim/metabolismo , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Sódio na Dieta/administração & dosagem , Água/metabolismo , Animais , Aquaporina 2/genética , Aquaporina 2/metabolismo , Ciclo-Oxigenase 2/genética , Retroalimentação Fisiológica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Masculino , Ratos , Receptores de Prostaglandina E Subtipo EP3/genética , Equilíbrio Hidroeletrolítico/efeitos dos fármacos
8.
Am J Physiol Renal Physiol ; 307(6): F736-46, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25080527

RESUMO

We tested the hypothesis that inhibition of EP3 receptors enhances cyclooxygenase (COX)-2 expression in the thick ascending limb (TAL) induced by hypertonic stimuli. COX-2 protein expression in the outer medulla increased approximately twofold in mice given free access to 1% NaCl in the drinking water for 3 days. The increase was associated with an approximate threefold elevation in COX-2 mRNA accumulation and an increase in PGE2 production by isolated medullary (m)TAL tubules from 77.3 ± 8.4 to 165.7 ± 10.8 pg/mg protein. Moreover, administration of NS-398 abolished the increase in PGE2 production induced by 1% NaCl. EP3 receptor mRNA levels also increased approximately twofold in the outer medulla of mice that ingested 1% NaCl. The selective EP3 receptor antagonist L-798106 increased COX-2 mRNA by twofold in mTAL tubules, and the elevation in COX-2 protein induced by 1% NaCl increased an additional 50% in mice given L-798106. COX-2 mRNA in primary mTAL cells increased twofold in response to media made hypertonic by the addition of NaCl (400 mosmol/kg H2O). L-798106 increased COX-2 mRNA twofold in isotonic media and fourfold in cells exposed to 400 mosmol/kg H2O. PGE2 production by mTAL cells increased from 79.3 ± 4.6 to 286.7 ± 6.3 pg/mg protein after challenge with 400 mosmol/kg H2O and was inhibited in cells transiently transfected with a lentivirus short hairpin RNA construct targeting exon 5 of COX-2 to silence COX-2. Collectively, the data suggest that local hypertonicity in the mTAL is associated with an increase in COX-2 expression concomitant with elevated EP3 receptor expression, which limits COX-2 activity in this segment of the nephron.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Alça do Néfron/enzimologia , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Sulfonamidas/metabolismo , Animais , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Prostaglandina E Subtipo EP3/antagonistas & inibidores , Transdução de Sinais , Cloreto de Sódio
9.
Am J Physiol Renal Physiol ; 304(5): F533-42, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23269645

RESUMO

Pathways that contribute to TNF production by the kidney are not well defined. Mice given 1% NaCl in the drinking water for 3 days exhibited a 2.5-fold increase in urinary, but not plasma, TNF levels compared with mice given tap water. Since furosemide attenuated the increase in TNF levels, we hypothesized that hypertonic NaCl intake increases renal TNF production by a pathway involving the Na(+)-K(+)-2Cl(-) cotransporter (NKCC2). A 2.5-fold increase in NKCC2A mRNA accumulation was observed in medullary thick ascending limb (mTAL) tubules from mice given 1% NaCl; a concomitant 2-fold increase in nuclear factor of activated T cells 5 (NFAT5) mRNA and protein expression was observed in the outer medulla. Urinary TNF levels were reduced in mice given 1% NaCl after an intrarenal injection of a lentivirus construct designed to specifically knockdown NKCC2A (EGFP-N2A-ex4); plasma levels of TNF did not change after injection of EGFP-N2A-ex4. Intrarenal injection of EGFP-N2A-ex4 also inhibited the increase of NFAT5 mRNA abundance in the outer medulla of mice given 1% NaCl. TNF production by primary cultures of mTAL cells increased approximately sixfold in response to an increase in osmolality to 400 mosmol/kgH2O produced with NaCl and was inhibited in cells transiently transfected with a dnNFAT5 construct. Transduction of cells with EGFP-N2A-ex4 also prevented increases in TNF mRNA and protein production in response to high NaCl concentration and reduced transcriptional activity of a NFAT5 promoter construct. Since NKCC2A expression is restricted to the TAL, NKCC2A-dependent activation of NFAT5 is part of a pathway by which the TAL produces TNF in response to hypertonic NaCl intake.


Assuntos
Rim/metabolismo , Fatores de Transcrição NFATC/metabolismo , Cloreto de Sódio/farmacologia , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Células Cultivadas , Rim/citologia , Rim/efeitos dos fármacos , Alça do Néfron/citologia , Alça do Néfron/efeitos dos fármacos , Alça do Néfron/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Simportadores de Cloreto de Sódio-Potássio/genética , Membro 1 da Família 12 de Carreador de Soluto , Fator de Necrose Tumoral alfa/urina
10.
Hypertension ; 80(2): 426-439, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36448465

RESUMO

BACKGROUND: Previous studies showed that miR-195a-5p was among the most abundant microRNAs (miRNAs) expressed in the kidney. METHODS: Lentivirus silencing of tumor necrosis factor-α (TNF) was performed in vivo and in vitro. Luciferase reporter assays confirmed that bumetanide-sensitive Na+-K+-2Cl- cotransporter isoform A (NKCC2A) mRNA is targeted and repressed by miR-195a-5p. Radiotelemetry was used to measure mean arterial pressure. RESULTS: TNF upregulates mmu-miR-195a-5p, and -203 and downregulates mmu-miR-30c and -100 in the medullary thick ascending limb of male mice. miR-195a-5p was >3-fold higher in the renal outer medulla of mice given an intrarenal injection of murine recombinant TNF, whereas silencing TNF inhibited miR-195a-5p expression by ≈51%. Transient transfection of a miR-195a-5p mimic into medullary thick ascending limb cells suppressed NKCC2A mRNA by ≈83%, whereas transfection with Anti-miR-195a-5p increased NKCC2A mRNA. Silencing TNF in medullary thick ascending limb cells prevented increases in miR-195 induced by 400 mosmol/kg H2O medium, an effect reversed by transfection with a miR-195a-5p mimic. Expression of phosphorylated NKCC2 increased 1.5-fold in medullary thick ascending limb cells transfected with Anti-miR-195a-5p and a miR-195a-5p mimic prevented the increase, which was induced by silencing TNF in cells exposed to 400 mosmol/kg H2O medium after osmolality was increased by adding NaCl. Intrarenal injection of TNF suppressed NKCC2A mRNA, whereas injection of miR-195a-5p prevented the increase of NKCC2A mRNA abundance and phosphorylated NKCC2 expression when TNF was silenced. Intrarenal injection with miR-195a-5p markedly attenuated MAP after renal silencing of TNF in mice given 1% NaCl. CONCLUSIONS: The study identifies miR-195a-5p as a salt-sensitive and TNF-inducible miRNA that attenuates NaCl-mediated increases in blood pressure by inhibiting NKCC2A.


Assuntos
MicroRNAs , Cloreto de Sódio , Animais , Masculino , Camundongos , Antagomirs , Pressão Sanguínea/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/genética , Membro 1 da Família 12 de Carreador de Soluto/metabolismo
11.
J Hum Hypertens ; 37(8): 701-708, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36008598

RESUMO

Previous work in mouse models shows that urinary TNF-α levels become elevated when dietary salt (NaCl) intake increases. To examine if this relationship exists in humans, we conducted a secondary analysis of the Dietary Approaches to Stop Hypertension (DASH)-Sodium trial to determine levels of urinary TNF-α in 367 subjects categorized by race, sex, and blood pressure. The DASH-Sodium trial is a multicenter feeding trial in which subjects were randomly assigned to either the DASH or control diet, and high, medium, and low sodium in random order. Multivariable linear regression was used to model baseline TNF-α and a mixed model was used to model TNF-α as a function of dietary intervention. At baseline, with all subjects on a "typical American diet", urinary TNF-α levels were lowest in Black, p = 0.002 and male subjects, p < 0.001. After randomization to either the DASH or control diet, with increasing levels of sodium, urinary TNF-α levels increased only in subjects on the control diet, p < 0.05. As in the baseline analysis, TNF-α levels were highest in White females, then White males, Black females and lowest in Black males. The results indicate that urinary TNF-α levels in DASH-Sodium subjects are regulated by NaCl intake, modulated by the DASH diet, and influenced by both race and sex. The inherent differences between subgroups support studies in mice showing that increases in renal TNF-α minimize the extent salt-dependent activation of NKCC2.


Assuntos
Abordagens Dietéticas para Conter a Hipertensão , Hipertensão , Sódio na Dieta , Feminino , Humanos , Masculino , Animais , Camundongos , Sódio/urina , Fator de Necrose Tumoral alfa , Cloreto de Sódio , Fatores Raciais , Dieta Hipossódica , Pressão Sanguínea , Cloreto de Sódio na Dieta
12.
Am J Physiol Renal Physiol ; 303(3): F449-57, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22622465

RESUMO

Cyclooxygenase-2 (COX-2) is constitutively expressed and highly regulated in the thick ascending limb (TAL). As COX-2 inhibitors (Coxibs) increase COX-2 expression, we tested the hypothesis that a negative feedback mechanism involving PGE(2) EP3 receptors regulates COX-2 expression in the TAL. Sprague-Dawley rats were treated with a Coxib [celecoxib (20 mg·kg(-1)·day(-1)) or rofecoxib (10 mg·kg(-1)·day(-1))], with or without sulprostone (20 µg·kg(-1)·day(-1)). Sulprostone was given using two protocols, namely, previous to Coxib treatment (prevention effect; Sulp7-Coxib5 group) and 5 days after initiation of Coxib treatment (regression effect; Coxib10-Sulp5 group). Immunohistochemical and morphometric analysis revealed that the stained area for COX-2-positive TAL cells (µm(2)/field) increased in Coxib-treated rats (Sham: 412 ± 56.3, Coxib: 794 ± 153.3). The Coxib effect was inhibited when sulprostone was used in either the prevention (285 ± 56.9) or regression (345 ± 51.1) protocols. Western blot analysis revealed a 2.1 ± 0.3-fold increase in COX-2 protein expression in the Coxib-treated group, an effect abolished by sulprostone using either the prevention (1.2 ± 0.3-fold) or regression (0.6 ± 0.4-fold vs. control, P < 0.05) protocols. Similarly, the 6.4 ± 0.6-fold increase in COX-2 mRNA abundance induced by Coxibs (P < 0.05) was inhibited by sulprostone; prevention: 0.9 ± 0.3-fold (P < 0.05) and regression: 0.6 ± 0.1 (P < 0.05). Administration of a selective EP3 receptor antagonist, L-798106, also increased the area for COX-2-stained cells, COX-2 mRNA accumulation, and protein expression in the TAL. Collectively, the data suggest that COX-2 levels are regulated by a novel negative feedback loop mediated by PGE(2) acting on its EP3 receptor in the TAL.


Assuntos
Ciclo-Oxigenase 2/biossíntese , Rim/enzimologia , Receptores de Prostaglandina E Subtipo EP3/fisiologia , Animais , Western Blotting , Inibidores de Ciclo-Oxigenase 2/farmacologia , Dinoprostona/análogos & derivados , Dinoprostona/farmacologia , Dinoprostona/fisiologia , Retroalimentação Fisiológica/fisiologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/fisiologia , Imuno-Histoquímica , Rim/efeitos dos fármacos , Rim/metabolismo , Córtex Renal/efeitos dos fármacos , Córtex Renal/metabolismo , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Masculino , Néfrons/metabolismo , RNA/biossíntese , RNA/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Prostaglandina E Subtipo EP1/metabolismo , Receptores de Prostaglandina E Subtipo EP3/efeitos dos fármacos
13.
Prostaglandins Other Lipid Mediat ; 98(3-4): 101-6, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22101002

RESUMO

The thick ascending limb of Henle's loop (TAL) is capable of metabolizing arachidonic acid (AA) by cytochrome P450 (CYP450) and cyclooxygenase (COX) pathways and has been identified as a nephron segment that contributes to salt-sensitive hypertension. Previous studies demonstrated a prominent role for CYP450-dependent metabolism of AA to products that inhibited ion transport pathways in the TAL. However, COX-2 is constitutively expressed along all segments of the TAL and is increased in response to diverse stimuli. The ability of Tamm-Horsfall glycoprotein, a selective marker of cortical TAL (cTAL) and medullary (mTAL), to bind TNF and localize it to this nephron segment prompted studies to determine the capacity of mTAL cells to produce TNF and determine its effects on mTAL function. The colocalization of calcium-sensing receptor (CaR) and COX-2 in the TAL supports the notion that activation of CaR induces TNF-dependent COX-2 expression and PGE2 synthesis in mTAL cells. Additional studies showed that TNF produced by mTAL cells inhibits 86Rb uptake, an in vitro correlate of natriuresis, in an autocrine- and COX-2-dependent manner. The molecular mechanism for these effects likely includes inhibition of Na⁺-K⁺-2Cl⁻ cotransporter (NKCC2) expression and trafficking.


Assuntos
Eicosanoides/metabolismo , Alça do Néfron/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Humanos , Alça do Néfron/enzimologia , Receptores de Detecção de Cálcio/metabolismo
14.
Prostaglandins Other Lipid Mediat ; 99(1-2): 45-50, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22800939

RESUMO

The effect of tumor necrosis factor-alpha (TNF) on cyclooxygenase-2 (COX-2) expression in the renal outer medulla (OM) was determined in a model of dihydrotachysterol (DHT)-induced hypercalcemia. Increases in serum calcium and water intake were observed during ingestion of a DHT-containing diet in both wild type (WT) and TNF deficient mice (TNF(-/-)). Polyuria and a decrease in body weight were observed in response to DHT treatment in WT and TNF(-/-) mice. A transient elevation in urinary TNF was observed in WT mice treated with DHT. Moreover, increased urinary levels of prostaglandin E(2) (PGE(2)) and a corresponding increase in COX-2 expression in the OM were observed in WT mice fed DHT. Increased COX-2 expression was not observed in TNF(-/-) mice fed DHT, and the characteristics of PGE(2) synthesis were distinct from those in WT mice. This study demonstrates that COX-2 expression in the OM, secondary to hypercalemia, is TNF-dependent.


Assuntos
Ciclo-Oxigenase 2/biossíntese , Hipercalcemia/metabolismo , Medula Renal/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Di-Hidrotaquisterol , Hipercalcemia/induzido quimicamente , Masculino , Camundongos , Poliúria/induzido quimicamente , Fator de Necrose Tumoral alfa/deficiência , Fator de Necrose Tumoral alfa/urina
15.
Hypertension ; 79(12): 2656-2670, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36129177

RESUMO

TNF-α (tumor necrosis factor-alpha) is the best known as a proinflammatory cytokine; yet, this cytokine also has important immunomodulatory and regulatory functions. As the effects of TNF-α on immune system function were being revealed, the spectrum of its activities appeared in conflict with each other before investigators defined the settings and mechanisms by which TNF-α contributed to both host defense and chronic inflammation. These effects reflect self-protective mechanisms that may become harmful when dysregulated. The paradigm of physiological and pathophysiological effects of TNF-α has since been uncovered in the lung, colon, and kidney where its role has been identified in pulmonary edema, electrolyte reabsorption, and blood pressure regulation, respectively. Recent studies on the prohypertensive and inflammatory effects of TNF-α in the cardiovascular system juxtaposed to those related to NaCl and blood pressure homeostasis, the response of the kidney to lipopolysaccharide, and protection against bacterial infections are helping define the mechanisms by which TNF-α modulates distinct functions within the kidney. This review discusses how production of TNF-α by renal epithelial cells may contribute to regulatory mechanisms that not only govern electrolyte excretion and blood pressure homeostasis but also maintain the appropriate local hypersalinity environment needed for optimizing the innate immune response to bacterial infections in the kidney. It is possible that the wide range of effects mediated by TNF-α may be related to severity of disease, amount of inflammation and TNF-α levels, and the specific cell types that produce this cytokine, areas that remain to be investigated further.


Assuntos
Angiotensina II , Fator de Necrose Tumoral alfa , Humanos , Pressão Sanguínea/fisiologia , Angiotensina II/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Cloreto de Sódio na Dieta/farmacologia , Rim/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo
16.
Am J Physiol Renal Physiol ; 300(4): F966-75, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21228109

RESUMO

The effects of Na(+)-K(+)-2Cl(-) cotransporter type 2 (NKCC2) isoforms on the regulation of nuclear factor of activated T cells isoform 5 (NFAT5) were determined in mouse medullary thick ascending limb (mTAL) cells exposed to high NaCl concentration. Primary cultures of mTAL cells and freshly isolated mTAL tubules, both derived from the outer medulla (outer stripe>inner stripe), express NKCC2 isoforms A and F. The relative expression of NKCC2A mRNA was approximately twofold greater than NKCC2F in these preparations. The abundance of NKCC2A mRNA, but not NKCC2F mRNA, increased approximately twofold when mTAL cells were exposed for 2 h to a change in osmolality from 300 to 500 mosmol/kgH2O, produced with NaCl. Total NKCC2 protein expression also increased. Moreover, a 2.5-fold increase in NFAT5 mRNA accumulation was observed after cells were exposed to 500 mosmol/kgH2O for 4 h. Laser-scanning cytometry detected a twofold increase in endogenous NFAT5 protein expression in response to high NaCl concentration. Pretreatment with the loop diuretic bumetanide dramatically reduced transcriptional activity of the NFAT5-specific reporter construct TonE-Luc in mTAL cells exposed to high NaCl. Transient transfection of mTAL cells with shRNA vectors targeting NKCC2A prevented increases in NFAT5 mRNA abundance and protein expression and inhibited NFAT5 transcriptional activity in response to hypertonic stress. Silencing of NKCC2F mRNA did not affect NFAT5 mRNA accumulation but partially inhibited NFAT5 transcriptional activity. These findings suggest that NKCC2A and NKCC2F exhibit differential effects on NFAT5 expression and transcriptional activity in response to hypertonicity produced by high NaCl concentration.


Assuntos
Medula Renal/metabolismo , Alça do Néfron/metabolismo , Fatores de Transcrição NFATC/metabolismo , Isoformas de Proteínas/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Análise de Variância , Animais , Western Blotting , Células Cultivadas , Regulação da Expressão Gênica , Medula Renal/citologia , Medula Renal/efeitos dos fármacos , Alça do Néfron/citologia , Alça do Néfron/efeitos dos fármacos , Masculino , Camundongos , Fatores de Transcrição NFATC/genética , Isoformas de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Cloreto de Sódio/metabolismo , Cloreto de Sódio/farmacologia , Simportadores de Cloreto de Sódio-Potássio/genética , Membro 1 da Família 12 de Carreador de Soluto
17.
Am J Physiol Renal Physiol ; 301(1): F94-100, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21511694

RESUMO

The effects of TNF gene deletion on renal Na(+)-K(+)-2Cl(-) cotransporter (NKCC2) expression and activity were determined. Outer medulla from TNF(-/-) mice exhibited a twofold increase in total NKCC2 protein expression compared with wild-type (WT) mice. This increase was not observed in TNF(-/-) mice treated with recombinant human TNF (hTNF) for 7 days. Administration of hTNF had no effect on total NKCC2 expression in WT mice. A fourfold increase in NKCC2A mRNA accumulation was observed in outer medulla from TNF(-/-) compared with WT mice; NKCC2F and NKCC2B mRNA accumulation was similar between genotypes. The increase in NKCC2A mRNA accumulation was attenuated when TNF(-/-) mice were treated with hTNF. Bumetanide-sensitive O(2) consumption, an in vitro correlate of NKCC2 activity, was 2.8 ± 0.2 nmol·min(-1)·mg(-1) in medullary thick ascending limb tubules from WT, representing ∼40% of total O(2) consumption, whereas, in medullary thick ascending limb tubules from TNF(-/-) mice, it was 5.6 ± 0.3 nmol·min(-1)·mg(-1), representing ∼60% of total O(2) consumption. Administration of hTNF to TNF(-/-) mice restored the bumetanide-sensitive component to ∼30% of total O(2) consumption. Ambient urine osmolality was higher in TNF(-/-) compared with WT mice (2,072 ± 104 vs. 1,696 ± 153 mosmol/kgH(2)O, P < 0.05). The diluting ability of the kidney, assessed by measuring urine osmolality before and after 1 h of water loading also was greater in TNF(-/-) compared with WT mice (174 ± 38 and 465 ± 81 mosmol/kgH(2)O, respectively, P < 0.01). Collectively, these findings suggest that TNF plays a role as an endogenous inhibitor of NKCC2 expression and function.


Assuntos
Medula Renal/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Fator de Necrose Tumoral alfa/fisiologia , Animais , Western Blotting , Cloretos/metabolismo , Fragmentação do DNA , DNA Complementar/biossíntese , Indicadores e Reagentes , Isomerismo , Capacidade de Concentração Renal/fisiologia , Testes de Função Renal , Medula Renal/citologia , Medula Renal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Concentração Osmolar , Consumo de Oxigênio/efeitos dos fármacos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Simportadores de Cloreto de Sódio-Potássio/genética , Membro 1 da Família 12 de Carreador de Soluto , Fator de Necrose Tumoral alfa/genética
18.
Brain ; 133(Pt 8): 2264-80, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20488889

RESUMO

Intraventricular haemorrhage is a major complication of prematurity that results in neurological dysfunctions, including cerebral palsy and cognitive deficits. No therapeutic options are currently available to limit the catastrophic brain damage initiated by the development of intraventricular haemorrhage. As intraventricular haemorrhage leads to an inflammatory response, we asked whether cyclooxygenase-2, its derivative prostaglandin E2, prostanoid receptors and pro-inflammatory cytokines were elevated in intraventricular haemorrhage; whether their suppression would confer neuroprotection; and determined how cyclooxygenase-2 and cytokines were mechanistically-linked. To this end, we used our rabbit model of intraventricular haemorrhage where premature pups, delivered by Caesarian section, were treated with intraperitoneal glycerol at 2 h of age to induce haemorrhage. Intraventricular haemorrhage was diagnosed by head ultrasound at 6 h of age. The pups with intraventricular haemorrhage were treated with inhibitors of cyclooxygenase-2, prostanoid receptor-1 or tumour necrosis factor-α; and cell-infiltration, cell-death and gliosis were compared between treated-pups and vehicle-treated controls during the first 3 days of life. Neurobehavioural performance, myelination and gliosis were assessed in pups treated with cyclooxygenase-2 inhibitor compared to controls at Day 14. We found that both protein and messenger RNA expression of cyclooxygenase-2, prostaglandin E2, prostanoid receptor-1, tumour necrosis factor-α and interleukin-1ß were consistently higher in the forebrain of pups with intraventricular haemorrhage relative to pups without intraventricular haemorrhage. However, cyclooxygenase-1 and prostanoid receptor 2-4 levels were comparable in pups with and without intraventricular haemorrhage. Cyclooxygenase-2, prostanoid receptor-1 or tumour necrosis factor-α inhibition reduced inflammatory cell infiltration, apoptosis, neuronal degeneration and gliosis around the ventricles of pups with intraventricular haemorrhage. Importantly, cyclooxygenase-2 inhibition alleviated neurological impairment, improved myelination and reduced gliosis at 2 weeks of age. Cyclooxygenase-2 or prostanoid receptor-1 inhibition reduced tumour necrosis factor-α level, but not interleukin-1ß. Conversely, tumour necrosis factor-α antagonism did not affect cyclooxygenase-2 expression. Hence, prostanoid receptor-1 and tumour necrosis factor-α are downstream to cyclooxygenase-2 in the inflammatory cascade induced by intraventricular haemorrhage, and cyclooxygenase-2-inhibition or suppression of downstream molecules--prostanoid receptor-1 or tumour necrosis factor-α--might be a viable neuroprotective strategy for minimizing brain damage in premature infants with intraventricular haemorrhage.


Assuntos
Inibidores de Ciclo-Oxigenase 2/farmacologia , Hemorragias Intracranianas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Receptores de Prostaglandina E/antagonistas & inibidores , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Ventrículos Cerebrais , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Modelos Animais de Doenças , Gliose/tratamento farmacológico , Gliose/metabolismo , Gliose/patologia , Interleucina-1beta/metabolismo , Hemorragias Intracranianas/metabolismo , Hemorragias Intracranianas/patologia , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Coelhos , Receptores de Prostaglandina E/metabolismo , Receptores de Prostaglandina E Subtipo EP1 , Fator de Necrose Tumoral alfa/metabolismo
19.
Am J Physiol Renal Physiol ; 299(5): F1141-50, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20739394

RESUMO

The hypothesis that TNF receptor 1-deficient (TNFR1(-/-)) mice display blood pressure (BP) and renal functional responses that differ from wild-type (WT) mice was tested in an angiotensin II (ANG II)-dependent model of hypertension. Basal systolic BP (SBP), mean arterial pressure, diastolic BP, heart rate (HR), and pulse pressure were similar in WT and TNFR1(-/-) mice. Infusion of ANG II for 7 days elevated SBP to a greater extent in TNFR1(-/-) compared with WT mice; pulse pressure was also elevated in TNFR1(-/-). HR decreased in TNFR1(-/-) mice infused with ANG II, an effect prominent on day 1. Basal urinary albumin excretion was similar in WT and TNFR1(-/-) mice but was higher in TNFR1(-/-) in response to ANG II infusion. Water intake and urine volume were increased by ANG II infusion; this increase was higher in TNFR1(-/-) vs. WT mice, whereas body weight and food intake were unaffected. Baseline creatinine clearance (Ccr), urinary sodium excretion, and fractional excretion of sodium (FE(Na)%) were similar in vehicle-treated WT and TNFR1(-/-) mice. ANG II infusion for 7 days increased Ccr and filtered load of sodium in TNFR1(-/-) but not WT mice, whereas it elicited an increase in FE(Na)% and urinary sodium excretion in WT but not TNFR1(-/-) mice. ANG II also inhibited renal TNFR1 mRNA accumulation while increasing that of TNFR2. These findings indicate deletion of TNFR1 is associated with an exacerbated SBP response, decrease in HR, and altered renal function in ANG II-dependent hypertension.


Assuntos
Angiotensina II/farmacologia , Pressão Sanguínea/fisiologia , Rim/efeitos dos fármacos , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Vasoconstritores/farmacologia , Animais , Peso Corporal/fisiologia , Ingestão de Alimentos/fisiologia , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Circulação Renal/efeitos dos fármacos , Telemetria , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
20.
Hypertension ; 76(6): 1744-1752, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33131307

RESUMO

We showed that intrarenal suppression of TNF (tumor necrosis factor) production under low salt (LS) conditions increases renal cortical AGT (angiotensinogen) mRNA and protein expression. Intrarenal injection of murine recombinant TNF attenuated increases of AGT in mice ingesting LS. Moreover, AGT mRNA and protein expression increased ≈6-fold and 2-fold, respectively, in mice ingesting LS that also received an intrarenal injection of a lentivirus construct that specifically silenced TNF in the kidney (U6-TNF-ex4). Silencing of TNF under normal salt and high salt (HS) conditions also resulted in increased AGT expression. Since renal TNF production decreases in response to LS and increases in response to HS, the data suggest that alterations in TNF production under these conditions modulate the degree of AGT expression. We also tested the hypothesis that TNF inhibits intrarenal AGT expression by a mechanism involving miR-133a. Expression of miR-133a decreased in mice given LS and increased in response to HS for 7 days. Intrarenal silencing of TNF reversed the effects of HS on miR-133a-dependent AGT expression. In contrast, intrarenal TNF administration increased miR-133a expression in the kidney. Collectively, the data suggest that miR-133a is a salt-sensitive microRNA that inhibits AGT in the kidney and is increased by TNF. The HS-induced increase in blood pressure observed following silencing of TNF was markedly reduced upon intrarenal administration of miR-133a suggesting that intrinsic effects of TNF in the kidney to limit the blood pressure response to HS include an increase in miR-133a, which suppresses AGT expression.


Assuntos
Angiotensinogênio/genética , Regulação da Expressão Gênica/genética , Túbulos Renais Proximais/metabolismo , MicroRNAs/genética , Fator de Necrose Tumoral alfa/genética , Angiotensinogênio/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Interferência de RNA , Cloreto de Sódio na Dieta/administração & dosagem , Fator de Necrose Tumoral alfa/administração & dosagem , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa