Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 285: 131476, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34265709

RESUMO

The selective phosphorus recovery by wet chemical extraction and precipitation was assessed at the laboratory scale aiming at identifying a simple and replicable procedure that could be effectively applied to different types of sewage sludge ashes. The experimental work was performed on five samples of sewage sludge ashes, of which three were obtained from muffle-furnace incineration and two from full-scale mono-incineration plants. A single-step extraction procedure has been investigated by applying different operating conditions (type of leaching acid, liquid-to-solid ratio, contact time). Experimental results indicated that phosphorus recovery efficiency varied between 54 and 92% with limited co-dissolution of metals and metalloids, except for arsenic. Operating conditions, sewage sludge ashes characteristics and phosphorus removal processes in the wastewater treatment plant were the main factors affecting phosphorus recovery efficiency. The application of optimal operating conditions (0.2 M sulfuric acid, liquid-to-solid ratio of 20 and contact time of 2 h) resulted in phosphorus recovery from 76 to 92% on four samples. Subsequently, precipitation of phosphorus from acidic leachate was carried out by lime dosing. After filtering and drying, the recovered products presented a P2O5 content between 11.5 and 36.7% dry weight, with a fraction of soluble phosphorus between 75 and 91%, a good percentage for application as fertilizer or animal feed. Since few undesired elements (i.e., As, Cu and Zn) exceeded the limits for fertilizer application (exception was represented by Ni and Pb, which were present at low concentration), an additional purification step may be required. Overall, experimental results highlighted the influence of process parameters on phosphorus recovery.


Assuntos
Fósforo , Esgotos , Fertilizantes , Incineração , Metais
2.
Materials (Basel) ; 14(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34771827

RESUMO

Phosphate rocks are a critical resource for the European Union, and alternative sources to assure the future production of a new generation of fertilizers are to be assessed. In this study, a statistical approach, combined with a sustainability evaluation for the recovery of materials from waste containing phosphorus (P), is presented. This work proposes a strategy to recover P and silica (SiO2) from rice husk poultry litter ash (RHPLA). The design of experiment (DoE) method was applied to maximize the P extraction using hydrochloric acid (HCl), with the aim to minimize the contamination that can occur by leachable heavy metals present in RHPLA, such as zinc (Zn). Two independent variables, the molar concentration of the acid, and the liquid-to-solid ratio (L/S) between the acid and RHPLA, were used in the experimental design to optimize the operating parameters. The statistical analysis showed that a HCl concentration of 0.34 mol/L and an L/S ratio of 50 are the best conditions to recover P with low Zn contamination. Concerning the SiO2, its content in RHPLA is too low to consider the proposed recovery process as advantageous. However, based on our analysis, this process should be sustainable to recover SiO2 when its content in the starting materials is more than 80%.

3.
RSC Adv ; 11(15): 8927-8939, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35423396

RESUMO

The livestock sector is one of the most important sectors of the agricultural economy due to an increase in the demand for animal protein. This increase generates serious waste disposal concerns and has negative environmental consequences. Furthermore, the food production chain needs phosphorus (P), which is listed as a critical raw material due to its high demand and limited availability in Europe. Manure contains large amounts of P and other elements that may be recycled, in the frame of circular economy and "zero waste" principles, and reused as a by-product for fertilizer production and other applications. This paper focuses on the extraction and recovery of amorphous silica from rice husk poultry litter ash. Two different extraction procedures are proposed and compared, and the obtained silica is characterized. This work shows that amorphous silica can be recovered as an almost pure material rendering the residual ash free of P. It also addresses the possibility of more specific phosphorous extraction procedures via acid leaching.

4.
Waste Manag ; 111: 10-21, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32464522

RESUMO

This paper reports a complete characterisation of poultry litter ash and its potential use as a heavy metal stabiliser. We propose a novel approach, in which the ashes deriving from municipal solid waste incineration (MSWI) are combined with poultry litter ash, rather than with coal combustion flue gas desulfurisation (FGD) residues. Heavy metals stabilisation was demonstrated by comparing the elemental concentrations in the leaching solutions of the starting raw and stabilised materials: leachable Pb and Zn showed a reduced solubility. The characterisation was conducted by total reflection X-ray fluorescence (TXRF), X-ray diffraction (XRD), micro-Raman spectroscopy and scanning electron microscopy combined with energy-dispersive X-ray spectrometry (SEM-EDX). The results showed that the poultry litter ash was Ca-, P-, K- and S-rich (>29 g/kg). It contained amorphous materials (i.e. fly ash economiser (FAECO) 73% and fly ash cyclone (FACYC) 61%) and soluble phases (e.g. arkanite and sylvite; up to 13% FAECO and 28% FACYC), as well as resilient crystalline (up to 2% of FAECO and FACYC) and amorphous phases (e.g. hydroxyapatite). After two months, the Pb and Zn concentrations in the leachate solutions were below the limit set by the European regulations for waste disposal (<0.2 mg/L and 1.5 mg/L, respectively). We propose a mechanism for the heavy metals stabilisation based on the carbonation process and high amounts of P, Ca and reactive amorphous phases. In conclusion, it is demonstrated that poultry litter ash can be an effective secondary source of heavy metals, allowing their immobilisation through P- and Ca-based reactive amorphous phases.


Assuntos
Metais Pesados , Eliminação de Resíduos , Animais , Carbono , Cinza de Carvão , Incineração , Material Particulado , Aves Domésticas , Resíduos Sólidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa