Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34588301

RESUMO

Because of their central importance in chemistry and biology, water molecules have been the subject of decades of intense spectroscopic investigations. Rotational spectroscopy of water vapor has yielded detailed information about the structure and dynamics of isolated water molecules, as well as water dimers and clusters. Nonlinear rotational spectroscopy in the terahertz regime has been developed recently to investigate the rotational dynamics of linear and symmetric-top molecules whose rotational energy levels are regularly spaced. However, it has not been applied to water or other lower-symmetry molecules with irregularly spaced levels. We report the use of recently developed two-dimensional (2D) terahertz rotational spectroscopy to observe high-order rotational coherences and correlations between rotational transitions that were previously unobservable. The results include two-quantum (2Q) peaks at frequencies that are shifted slightly from the sums of distinct rotational transitions on two different molecules. These results directly reveal the presence of previously unseen metastable water complexes with lifetimes of 100 ps or longer. Several such peaks observed at distinct 2Q frequencies indicate that the complexes have multiple preferred bimolecular geometries. Our results demonstrate the sensitivity of rotational correlations measured in 2D terahertz spectroscopy to molecular interactions and complexation in the gas phase.

2.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34930845

RESUMO

The dicarbon molecule (C2) is found in flames, comets, stars, and the diffuse interstellar medium. In comets, it is responsible for the green color of the coma, but it is not found in the tail. It has long been held to photodissociate in sunlight with a lifetime precluding observation in the tail, but the mechanism was not known. Here we directly observe photodissociation of C2 From the speed of the recoiling carbon atoms, a bond dissociation energy of 602.804(29) kJ·mol[Formula: see text] is determined, with an uncertainty comparable to its more experimentally accessible N2 and O2 counterparts. The value is within 0.03 kJ·mol-1 of high-level quantum theory. This work shows that, to break the quadruple bond of C2 using sunlight, the molecule must absorb two photons and undergo two "forbidden" transitions.

3.
Proc Natl Acad Sci U S A ; 117(1): 146-151, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31852828

RESUMO

The 193-nm photolysis of CH2CHCN illustrates the capability of chirped-pulse Fourier transform millimeter-wave spectroscopy to characterize transition states. We investigate the HCN, HNC photofragments in highly excited vibrational states using both frequency and intensity information. Measured relative intensities of J = 1-0 rotational transition lines yield vibrational-level population distributions (VPD). These VPDs encode the properties of the parent molecule transition state at which the fragment molecule was born. A Poisson distribution formalism, based on the generalized Franck-Condon principle, is proposed as a framework for extracting information about the transition-state structure from the observed VPD. We employ the isotopologue CH2CDCN to disentangle the unimolecular 3-center DCN elimination mechanism from other pathways to HCN. Our experimental results reveal a previously unknown transition state that we tentatively associate with the HCN eliminated via a secondary, bimolecular reaction.

4.
J Phys Chem A ; 126(20): 3090-3100, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35544770

RESUMO

Despite the long history of spectroscopic studies of the C2 molecule, fundamental questions about its chemical bonding are still being hotly debated. The complex electronic structure of C2 is a consequence of its dense manifold of near-degenerate, low-lying electronic states. A global multi-state diabatic model is proposed here to disentangle the numerous configuration interactions that occur within four symmetry manifolds of excited states of C2 (1Πg, 3Πg, 1Σu+ , and 3Σu+ ). The key concept of our model is the existence of two "valence-hole" configurations, 2σg22σu11πu33σg2 for 1,3Πg states and 2σg22σu11πu43σg1 for 1,3Σu+ states, that are derived from 3σg ← 2σu electron promotion. The lowest-energy state from each of the four C2 symmetry species is dominated by this type of valence-hole configuration at its equilibrium internuclear separation. As a result of their large binding energy (nominal bond order of 3) and correlation with the 2s22p2 + 2s2p3 separated-atom configurations, the presence of these valence-hole configurations has a profound impact on the global electronic structure and unimolecular dynamics of C2.

5.
Proc Natl Acad Sci U S A ; 116(47): 23444-23447, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31690662

RESUMO

Ammonia is special. It is nonplanar, yet in v = 1 of the umbrella mode (ν2) its inversion motion is faster than J = 0↔1 rotation. Does the simplicity of the Chemist's concept of an electric dipole moment survive the competition between rotation, inversion, and a strong external electric field? NH3 is a favorite pedagogical example of tunneling in a symmetric double-minimum potential. Tunneling is a dynamical concept, yet the quantitative characteristics of tunneling are expressed in a static, eigenstate-resolved spectrum. The inverting-umbrella tunneling motion in ammonia is both large amplitude and profoundly affected by an external electric field. We report how a uniquely strong (up to 108 V/m) direct current (DC) electric field causes a richly detailed sequence of reversible changes in the frequency-domain infrared spectrum (the v = 0→1 transition in the ν2 umbrella mode) of ammonia, freely rotating in a 10 K Ar matrix. Although the spectrum is static, encoded in it is the complete inter- and intramolecular picture of tunneling dynamics.

6.
J Am Chem Soc ; 143(8): 3124-3142, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33615780

RESUMO

The development of high-fidelity mechanisms for chemically reactive systems is a challenging process that requires the compilation of rate descriptions for a large and somewhat ill-defined set of reactions. The present unified combination of modeling, experiment, and theory provides a paradigm for improving such mechanism development efforts. Here we combine broadband rotational spectroscopy with detailed chemical modeling based on rate constants obtained from automated ab initio transition state theory-based master equation calculations and high-level thermochemical parametrizations. Broadband rotational spectroscopy offers quantitative and isomer-specific detection by which branching ratios of polar reaction products may be obtained. Using this technique, we observe and characterize products arising from H atom substitution reactions in the flash pyrolysis of acetone (CH3C(O)CH3) at a nominal temperature of 1800 K. The major product observed is ketene (CH2CO). Minor products identified include acetaldehyde (CH3CHO), propyne (CH3CCH), propene (CH2CHCH3), and water (HDO). Literature mechanisms for the pyrolysis of acetone do not adequately describe the minor products. The inclusion of a variety of substitution reactions, with rate constants and thermochemistry obtained from automated ab initio kinetics predictions and Active Thermochemical Tables analyses, demonstrates an important role for such processes. The pathway to acetaldehyde is shown to be a direct result of substitution of acetone's methyl group by a free H atom, while propene formation arises from OH substitution in the enol form of acetone by a free H atom.

7.
J Chem Phys ; 155(24): 244303, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34972375

RESUMO

In high orbital angular momentum (ℓ ≥ 3) Rydberg states, the centrifugal barrier hinders the close approach of the Rydberg electron to the ion-core. As a result, these core-nonpenetrating Rydberg states can be well described by a simplified model in which the Rydberg electron is only weakly perturbed by the long-range electric properties (i.e., multipole moments and polarizabilities) of the ion-core. We have used a long-range model to describe the vibrational autoionization dynamics of high-ℓ Rydberg states of nitric oxide (NO). In particular, our model explains the extensive angular momentum exchange between the ion-core and the Rydberg electron that had been previously observed in vibrational autoionization of f (ℓ = 3) Rydberg states. These results shed light on a long-standing mechanistic question around these previous observations and support a direct, vibrational mechanism of autoionization over an indirect, predissociation-mediated mechanism. In addition, our model correctly predicts newly measured total decay rates of g (ℓ = 4) Rydberg states because for ℓ ≥ 4, the non-radiative decay is dominated by autoionization rather than predissociation. We examine the predicted NO+ ion rotational state distributions generated by vibrational autoionization of g states and discuss applications of our model to achieve quantum state selection in the production of molecular ions.

8.
J Chem Phys ; 150(15): 154305, 2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-31005082

RESUMO

We report calculations of vibrational autoionization rates of CaF Rydberg states, based on the results of a global multi-channel quantum defect theory (MQDT) fit. Our goal is to use intuitive physical models to interpret and extend the results from the MQDT calculations and, in particular, to characterize the physical mechanisms for the interaction between the Rydberg electron and the ion-core. The calculations indicate that, among the six strongly l-mixed core-penetrating (CP) Rydberg series of CaF, the n.36 p^Π Rydberg series has the fastest Δv = 1 vibrational autoionization rate, which is at least four times larger than that for the other CP Rydberg series, in agreement with experimental results. We first demonstrate that the rotational level dependence of the vibrational autoionization rate of the n.36 p^Π series is satisfactorily explained by l-uncoupling interactions, which differ for the positive and negative Kronig symmetry levels. Next, we interpret the relative vibrational autoionization rates of all six CP Rydberg series in the context of a valence-precursor (VP) model. The VP model is a consequence of Mulliken's rule, which states that the innermost lobe of the Rydberg wavefunction remains invariant in both the nodal position and shape for members of the same Rydberg series. The electronic properties of the six VP states, which are the terminus states (lowest-n) of each of the six CP Rydberg series, are further characterized in terms of a ligand-field model, providing insight into the intimate relationship between the Rydberg electron density in the ion-core region and the vibrational autoionization rate.

9.
J Chem Phys ; 149(17): 174309, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30408969

RESUMO

We report two new experimental schemes to obtain rotationally resolved high-resolution spectra of predissociated S1 acetylene levels in the 47 000-47 300 cm-1 energy region (∼1200 cm-1 above the predissociation threshold). The two new detection schemes are compared to several other detection schemes (employed at similar laser power, molecular beam temperature, and number of signal averages) that have been used in our laboratory to study predissociated S1 acetylene levels, both in terms of the signal-to-noise ratio (S/N) of the resultant spectra and experimental simplicity. In the first method, H-atoms from the predissociated S1 acetylene levels are probed by two-photon laser-induced fluorescence (LIF). The H-atoms are pumped to the 3d level by the two-photon resonance transition at 205.14 nm. The resulting 3d-2p fluorescence (654.5 nm) is collected by a photomultiplier. The S/N of the H-atom fluorescence action spectrum is consistently better by ∼3× than that of the more widely used H-atom resonance-enhanced multiphoton ionization (REMPI) detection. Laser alignment is also considerably easier in H-atom fluorescence detection than H-atom REMPI detection due to the larger number-density of molecules that can be used in fluorescence vs. REMPI detection schemes. In the second method, fluorescence from electronically excited C2 and C2H photofragments of S1 acetylene is detected. In contrast to the H-atom detection schemes, the detected C2 and C2H photofragments are produced by the same UV laser as is used for the à - X ̃ acetylene excitation. As a result, laser alignment is greatly simplified for the photofragment fluorescence detection scheme, compared to both H-atom detection schemes. Using the photofragment fluorescence detection method, we are able to obtain action spectra of predissociated S1 acetylene levels with S/N ∼2× better than the HCCH REMPI detection and ∼10× better than H-atom and HCCH LIF detection schemes.

10.
J Chem Phys ; 147(14): 144201, 2017 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-29031267

RESUMO

We demonstrate coherent two-photon population transfer to Rydberg states of barium atoms using a combination of a pulsed dye laser and a chirped-pulse millimeter-wave spectrometer. Numerical calculations, using a density matrix formalism, reproduce our experimental results and explain the factors responsible for the observed fractional population transferred, optimal experimental conditions, and possibilities for future improvements. The long coherence times associated with the millimeter-wave radiation aid in creating coherence between the ground state and Rydberg states, but higher-coherence laser sources are required to achieve stimulated Raman adiabatic passage and for applications to molecules.

11.
J Am Chem Soc ; 138(21): 6731-4, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27171847

RESUMO

Dibenzo-7-phosphanorbornadiene Ph3PC(H)PA (1, A = C14H10, anthracene) is reported here as a molecular precursor to phosphaethyne (HC≡P), produced together with anthracene and triphenylphosphine. HCP generated by thermolysis of 1 has been observed by molecular beam mass spectrometry, laser-induced fluorescence, microwave spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. In toluene, fragmentation of 1 has been found to proceed with activation parameters of ΔH(⧧) = 25.5 kcal/mol and ΔS(⧧) = -2.43 eu and is accompanied by formation of an orange insoluble precipitate. Results from computational studies of the mechanism of HCP generation are in good agreement with experimental data. This high-temperature method of HCP generation has pointed to new reaction chemistry with azide anion to produce the 1,2,3,4-phosphatriazolate anion, HCPN3(-), for which structural data have been obtained in a single-crystal X-ray diffraction study. Negative-ion photoelectron spectroscopy has shown the adiabatic detachment energy for this anion to be 3.555(10) eV. The aromaticity of HCPN3(-) has been assessed using nucleus-independent chemical shift, quantum theory of atoms in molecules, and natural bond orbital methods.

12.
Phys Rev Lett ; 116(15): 153001, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-27127965

RESUMO

An experimental method is demonstrated that allows determination of the ratio between the electric (E1) and magnetic (M1) transition dipole moments in the A-X band of OH, including their relative sign. Although the transition strengths differ by more than 3 orders of magnitude, the measured M1-to-E1 ratio agrees with the ratio of the ab initio calculated values to within 3%. The relative sign is found to be negative, also in agreement with theory.

13.
J Chem Phys ; 144(20): 200901, 2016 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-27250271

RESUMO

Since its invention in 2006, the broadband chirped pulse Fourier transform spectrometer has transformed the field of microwave spectroscopy. The technique enables the collection of a ≥10 GHz bandwidth spectrum in a single shot of the spectrometer, which allows broadband, high-resolution microwave spectra to be acquired several orders of magnitude faster than what was previously possible. We discuss the advantages and challenges associated with the technique and look back on the first ten years of chirped pulse Fourier transform spectroscopy. In addition to enabling faster-than-ever structure determination of increasingly complex species, the technique has given rise to an assortment of entirely new classes of experiments, ranging from chiral sensing by three-wave mixing to microwave detection of multichannel reaction kinetics. However, this is only the beginning. Future generations of microwave experiments will make increasingly creative use of frequency-agile pulse sequences for the coherent manipulation and interrogation of molecular dynamics.


Assuntos
Análise de Fourier , Micro-Ondas , Espectrofotometria/normas , Espectrofotometria/tendências , Espectrofotometria/instrumentação
14.
J Chem Phys ; 144(14): 144312, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27083726

RESUMO

A new quartic force field for the SO2 C̃(1)B2 state has been derived, based on high resolution data from S(16)O2 and S(18)O2. Included are eight b2 symmetry vibrational levels of S(16)O2 reported in the first paper of this series [G. B. Park et al., J. Chem. Phys. 144, 144311 (2016)]. Many of the experimental observables not included in the fit, such as the Franck-Condon intensities and the Coriolis-perturbed effective C rotational constants of highly anharmonic C̃ state vibrational levels, are well reproduced using our force field. Because the two stretching modes of the C̃ state are strongly coupled via Fermi-133 interaction, the vibrational structure of the C̃ state is analyzed in a Fermi-system basis set, constructed explicitly in this work via partial diagonalization of the vibrational Hamiltonian. The physical significance of the Fermi-system basis is discussed in terms of semiclassical dynamics, based on study of Fermi-resonance systems by Kellman and Xiao [J. Chem. Phys. 93, 5821 (1990)]. By diagonalizing the vibrational Hamiltonian in the Fermi-system basis, the vibrational characters of all vibrational levels can be determined unambiguously. It is shown that the bending mode cannot be treated separately from the coupled stretching modes, particularly at vibrational energies of more than 2000 cm(-1). Based on our force field, the structure of the Coriolis interactions in the C̃ state of SO2 is also discussed. We identify the origin of the alternating patterns in the effective C rotational constants of levels in the vibrational progressions of the symmetry-breaking mode, νß (which correlates with the antisymmetric stretching mode in our assignment scheme).

15.
J Chem Phys ; 144(14): 144313, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27083727

RESUMO

The C̃ (1)B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. The asymmetry in the potential energy surface is expressed as a staggering in the energy levels of the ν3(') progression. We have recently made the first observation of low-lying levels with odd quanta of v3('), which allows us-in the current work-to characterize the origins of the level staggering. Our work demonstrates the usefulness of low-lying vibrational level structure, where the character of the wavefunctions can be relatively easily understood, to extract information about dynamically important potential energy surface crossings that occur at much higher energy. The measured staggering pattern is consistent with a vibronic coupling model for the double-minimum, which involves direct coupling to the bound 2 (1)A1 state and indirect coupling with the repulsive 3 (1)A1 state. The degree of staggering in the ν3(') levels increases with quanta of bending excitation, which is consistent with the approach along the C̃ state potential energy surface to a conical intersection with the 2 (1)A1 surface at a bond angle of ∼145°.

16.
J Chem Phys ; 144(14): 144311, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27083725

RESUMO

The C̃ (1)B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. However, low-lying levels with odd quanta of antisymmetric stretch (b2 vibrational symmetry) have not previously been observed because transitions into these levels from the zero-point level of the X̃ state are vibronically forbidden. We use IR-UV double resonance to observe the b2 vibrational levels of the C̃ state below 1600 cm(-1) of vibrational excitation. This enables a direct characterization of the vibrational level staggering that results from the double-minimum potential. In addition, it allows us to deperturb the strong c-axis Coriolis interactions between levels of a1 and b2 vibrational symmetry and to determine accurately the vibrational dependence of the rotational constants in the distorted C̃ electronic state.

17.
J Chem Phys ; 145(23): 234301, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27984864

RESUMO

The dependence of multipole moments and polarizabilities on external fields appears in many applications including biomolecular molecular mechanics, optical non-linearity, nanomaterial calculations, and the perturbation of spectroscopic signatures in atomic clocks. Over a wide range of distances, distributed multipole and polarizability potentials can be applied to obtain the variation of atom-centered atoms-in-molecules electric properties like bonding-quenched polarizability. For cylindrically symmetric charge distributions, we examine single-center and atom-centered effective polarization potentials in a non-relativistic approximation for Rydberg states. For ions, the multipole expansion is strongly origin-dependent, but we note that origin-independent invariants can be defined. The several families of invariants correspond to optimized representations differing by origin and number of terms. Among them, a representation at the center of dipole polarizability optimizes the accuracy of the potential with terms through 1/r4. We formulate the single-center expansion in terms of polarization-modified effective multipole moments, defining a form related to the source-multipole expansion of Brink and Satchler. Atom-centered potentials are an origin independent alternative but are limited both by the properties allowed at each center and by the neglected effects like bond polarizability and charge flow. To enable comparisons between single-center effective potentials in Cartesian or spherical form and two-center effective potentials with differing levels of mutual induction between atomic centers, we give analytical expressions for the bond-length and origin-dependence of multipole and polarizability terms projected in the multipole and polarizability expansion of Buckingham. The atom-centered potentials can then be used with experimental data and ab initio calculations to estimate atoms-in-molecules properties. Some results are given for BaF+ and HF showing the utility and limitations of the approach. More detailed results on X 1Σ+ CaF+ are published separately.


Assuntos
Eletricidade , Íons/química , Modelos Moleculares , Algoritmos
18.
J Phys Chem A ; 119(5): 857-65, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25625552

RESUMO

The acetylene emission spectrum from the trans-bent electronically excited à state to the linear ground electronic X̃ state has attracted considerable attention because it grants Franck­Condon access to local bending vibrational levels of the X̃ state with large-amplitude motion along the acetylene ⇌ vinylidene isomerization coordinate. For emission from the ground vibrational level of the à state, there is a simplifying set of Franck­Condon propensity rules that gives rise to only one zero-order bright state per conserved vibrational polyad of the X̃ state. Unfortunately, when the upper level involves excitation in the highly admixed ungerade bending modes, ν4' and ν6', the simplifying Franck­Condon propensity rule breaks down--as long as the usual polar basis (with v and l quantum numbers) is used to describe the degenerate bending vibrations of the X̃ state--and the intrapolyad intensities result from complicated interference patterns between many zero-order bright states. In this article, we show that, when the degenerate bending levels are instead treated in the Cartesian two-dimensional harmonic oscillator basis (with vx and vy quantum numbers), the propensity for only one zero-order bright state (in the Cartesian basis) is restored, and the intrapolyad intensities are simple to model, as long as corrections are made for anharmonic interactions. As a result of trans ⇌ cis isomerization in the à state, intrapolyad emission patterns from overtones of ν4' and ν6' evolve as quanta of trans bend (ν3') are added, so the emission intensities are not only relevant to the ground-state acetylene ⇌ vinylidene isomerization, they are also a direct reporter of isomerization in the electronically excited state.

19.
J Chem Phys ; 143(8): 084310, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26328846

RESUMO

We report novel experimental strategies that should prove instrumental in extending the vibrational and rotational assignments of the S1 state of acetylene, C2H2, in the region of the cis-trans isomerization barrier. At present, the assignments are essentially complete up to ∼500 cm(-1) below the barrier. Two difficulties arise when the assignments are continued to higher energies. One is that predissociation into C2H + H sets in roughly 1100 cm(-1) below the barrier; the resulting quenching of laser-induced fluorescence (LIF) reduces its value for recording spectra in this region. The other difficulty is that tunneling through the barrier causes a staggering in the K-rotational structure of isomerizing vibrational levels. The assignment of these levels requires data for K values up to at least 3. Given the rotational selection rule K' - ℓ('') = ± 1, such data must be obtained via excited vibrational levels of the ground state with ℓ('') > 0. In this paper, high resolution H-atom resonance-enhanced multiphoton ionization spectra are demonstrated to contain predissociated bands which are almost invisible in LIF spectra, while preliminary data using a hyperthermal pulsed nozzle show that ℓ('') = 2 states can be selectively populated in a jet, giving access to K' = 3 states in IR-UV double resonance.

20.
J Chem Phys ; 143(7): 071101, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26298106

RESUMO

We report the observation of eigenstates that embody large-amplitude, local-bending vibrational motion in acetylene by stimulated emission pumping spectroscopy via vibrational levels of the S1 state involving excitation in the non-totally symmetric bending modes. The N(b) = 14 level, lying at 8971.69 cm(-1) (J = 0), is assigned on the basis of degeneracy due to dynamical symmetry breaking in the local-mode limit. The level pattern for the N(b) = 16 level, lying at 10 218.9 cm(-1), is consistent with expectations for increased separation of ℓ = 0 and 2 vibrational angular momentum components. Increasingly poor agreement between our observations and the predicted positions of these levels highlights the failure of currently available normal mode effective Hamiltonian models to extrapolate to regions of the potential energy surface involving large-amplitude displacement along the acetylene ⇌ vinylidene isomerization coordinate.


Assuntos
Acetileno/química , Simulação por Computador , Isomerismo , Movimento (Física) , Análise Espectral , Vibração
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa