RESUMO
Amphibians are a classical object for physiological studies, and they are of great value for developmental studies owing to their transition from an aquatic larval form to an adult form with a terrestrial lifestyle. Axolotls (Ambystoma mexicanum) are of special interest for such studies because of their neoteny and facultative pedomorphosis, as in these animals, metamorphosis can be induced and fully controlled in laboratory conditions. It has been suggested that their metamorphosis, associated with gross anatomical changes in the heart, also involves physiological and electrical remodeling of the myocardium. We used whole-cell patch clamp to investigate possible changes caused by metamorphosis in electrical activity and major ionic currents in cardiomyocytes isolated from paedomorphic and metamorphic axolotls. T4-induced metamorphosis caused shortening of atrial and ventricular action potentials (APs), with no changes in resting membrane potential or maximum velocity of AP upstroke, favoring higher heart rate possible in metamorphic animals. Potential-dependent potassium currents in axolotl myocardium were represented by delayed rectifier currents IKr and IKs, and upregulation of IKs caused by metamorphosis probably underlies AP shortening. Metamorphosis was associated with downregulation of inward rectifier current IK1, probably serving to increase the excitability of myocardium in metamorphic animals. Metamorphosis also led to a slight increase in fast sodium current INa with no changes in its steady-state kinetics and to a significant upregulation of ICa in both atrial and ventricular cells, indicating stronger Ca2+ influx for higher cardiac contractility in metamorphic salamanders. Taken together, these changes serve to increase cardiac reserve in metamorphic animals.
Assuntos
Potenciais de Ação , Ambystoma mexicanum , Metamorfose Biológica , Miócitos Cardíacos , Animais , Ambystoma mexicanum/fisiologia , Ambystoma mexicanum/crescimento & desenvolvimento , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Coração/crescimento & desenvolvimento , Coração/fisiologia , Miocárdio/metabolismoRESUMO
Hibernating mammals are capable of maintaining normal cardiac function at low temperatures. Excitability of cardiac myocytes crucially depends on the fast sodium current (INa), which is decreased in hypothermia due to both depolarization of resting membrane potential and direct negative effect of low temperature. Therefore, INa in hibernating mammals should have specific features allowing to maintain excitability of myocardium at low temperatures. The current-voltage dependence of INa, its steady-state inactivation and activation and recovery from inactivation were studied in winter hibernating (WH) and summer active (SA) ground squirrels and in rats using whole-cell patch clamp at 10 °C and 20 °C. INa peak amplitude and the parameters of steady-state activation and inactivation curves did not differ between SA and WH ground squirrels at both temperatures. However, at both temperatures strong positive shift of activation and inactivation curves by 5-12 mV was observed in both WH and SA ground squirrels if compared to rats. This peculiarity of cardiac INa in ground squirrels helps to maintain excitability in conditions of depolarized resting membrane potential. The time course of INa recovery from inactivation at 10 °C was faster in WH than in SA ground squirrels, which could ensure normal activation of myocardium during hibernation.
Assuntos
Hibernação , Sódio , Animais , Ratos , Coração/fisiologia , Miocárdio , Mamíferos , Sciuridae , Hibernação/fisiologiaRESUMO
The orderly contraction of the vertebrate heart is determined by generation and propagation of cardiac action potentials (APs). APs are generated by the integrated activity of time- and voltage-dependent ionic channels which carry inward Na+ and Ca2+ currents, and outward K+ currents. This review compares atrial and ventricular APs and underlying ion currents between different taxa of vertebrates. We have collected literature data and attempted to find common electrophysiological features for two or more vertebrate groups, show differences between taxa and cardiac chambers, and indicate gaps in the existing data. Although electrical excitability of the heart in all vertebrates is based on the same superfamily of channels, there is a vast variability of AP waveforms between atrial and ventricular myocytes, between different species of the same vertebrate class and between endothermic and ectothermic animals. The wide variability of AP shapes is related to species-specific differences in animal size, heart rate, stage of ontogenetic development, excitation-contraction coupling, temperature and oxygen availability. Some of the differences between taxa are related to evolutionary development of genomes, which appear e.g. in the expression of different Na+ and K+ channel orthologues in cardiomyocytes of vertebrates. There is a wonderful variability of AP shapes and underlying ion currents with which electrical excitability of vertebrate heart can be generated depending on the intrinsic and extrinsic conditions of animal body. This multitude of ionic mechanisms provides excellent material for studying how the function of the vertebrate heart can adapt or acclimate to prevailing physiological and environmental conditions.
Assuntos
Miócitos Cardíacos , Sódio , Potenciais de Ação/fisiologia , Animais , Mamíferos/metabolismo , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp , Sódio/metabolismo , Vertebrados/metabolismoRESUMO
Birds developed endothermy and four-chambered high-performance heart independently from mammals. Though avian embryos are extensively studied and widely used as various models for heart research, little is known about cardiac physiology of adult birds. Meanwhile, cardiac electrophysiology is in search for easily accessible and relevant model objects which resemble human myocardium in the pattern of repolarizing currents (IKr, IKs, IKur and Ito). This study focuses on the configuration of electrical activity and electrophysiological phenotype of working myocardium in adult Japanese quails (Coturnix japonica). The resting membrane potential and action potential (AP) waveform in quail atrial myocardium were similar to that in working myocardium of rodents. Using whole-cell patch clamp and sharp glass microelectrodes, we demonstrated that the repolarization of quail atrial and ventricular myocardium is determined by voltage-dependent potassium currents IKr, IKs and Ito - the latter was previously considered as an exclusive evolutionary feature of mammals. The specific blockers of these currents, dofetilide (3 µmol l-1), HMR 1556 (30 µmol l-1) and 4-aminopyridine (3 mmol l-1), prolonged AP in both ventricular and atrial myocardial preparations. The expression of the corresponding channels responsible for these currents in quail myocardium was investigated with quantitative RT-PCR and western blotting. In conclusion, the described pattern of repolarizing ionic currents and channels in quail myocardium makes this species a novel and suitable experimental model for translational cardiac research and reveals new information related to the evolution of cardiac electrophysiology in vertebrates.
Assuntos
Coturnix/fisiologia , Coração/fisiologia , Canais de Potássio/fisiologia , Pesquisa Translacional Biomédica , Animais , Feminino , Masculino , Técnicas de Patch-ClampRESUMO
Birds occupy a unique position in the evolution of cardiac design. Their hearts are capable of cardiac performance on par with, or exceeding that of mammals, and yet the structure of their cardiomyocytes resembles those of reptiles. It has been suggested that birds use intracellular Ca2+ stored within the sarcoplasmic reticulum (SR) to power contractile function, but neither SR Ca2+ content nor the cross-talk between channels underlying Ca2+-induced Ca2+ release (CICR) have been studied in adult birds. Here we used voltage clamp to investigate the Ca2+ storage and refilling capacities of the SR and the degree of trans-sarcolemmal and intracellular Ca2+ channel interplay in freshly isolated atrial and ventricular myocytes from the heart of the Japanese quail (Coturnix japonica). A trans-sarcolemmal Ca2+ current (ICa) was detectable in both quail atrial and ventricular myocytes, and was mediated only by L-type Ca2+ channels. The peak density of ICa was larger in ventricular cells than in atrial cells, and exceeded that reported for mammalian myocardium recorded under similar conditions. Steady-state SR Ca2+ content of quail myocardium was also larger than that reported for mammals, and reached 750.6±128.2â µmol l-1 in atrial cells and 423.3±47.2â µmol l-1 in ventricular cells at 24°C. We observed SR Ca2+-dependent inactivation of ICa in ventricular myocytes, indicating cross-talk between sarcolemmal Ca2+ channels and ryanodine receptors in the SR. However, this phenomenon was not observed in atrial myocytes. Taken together, these findings help to explain the high-efficiency avian myocyte excitation-contraction coupling with regard to their reptilian-like cellular ultrastructure.
Assuntos
Cálcio , Coturnix , Animais , Cálcio/metabolismo , Coturnix/metabolismo , Ventrículos do Coração/metabolismo , Contração Miocárdica , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina , Retículo Sarcoplasmático/metabolismoRESUMO
Seasonal thermal remodelling (acclimatization) and laboratory thermal remodelling (acclimation) can induce different physiological changes in ectothermic animals. As global temperatures are changing at an increasing rate, there is urgency to understand the compensatory abilities of key organs such as the heart to adjust under natural conditions. Thus, the aim of the present study was to directly compare the acclimatization and acclimatory response within a single eurythermal fish species, the European shorthorn sculpin (Myoxocephalus scorpio). We used current- and voltage-clamp to measure ionic current densities in both isolated atrial and ventricular myocytes from three groups of fish: (1) summer-caught fish kept at 12°C ('summer-acclimated'); (2) summer-caught fish kept at 3°C ('cold acclimated'); and (3) fish caught in March ('winter-acclimatized'). At a common test temperature of 7.5°C, action potential (AP) was shortened by both winter acclimatization and cold acclimation compared with summer acclimation; however, winter acclimatization caused a greater shortening than did cold acclimation. Shortening of AP was achieved mostly by a significant increase in repolarizing current density (IKr and IK1) following winter acclimatization, with cold acclimation having only minor effects. Compared with summer acclimation, the depolarizing L-type calcium current (ICa) was larger following winter acclimatization, but again, there was no effect of cold acclimation on ICa Interestingly, the other depolarizing current, INa, was downregulated at low temperatures. Our further analysis shows that ionic current remodelling is primarily due to changes in ion channel density rather than current kinetics. In summary, acclimatization profoundly modified the electrical activity of the sculpin heart while acclimation to the same temperature for >1.5â months produced very limited remodelling effects.
Assuntos
Aclimatação , Potenciais de Ação/fisiologia , Peixes/fisiologia , Miócitos Cardíacos/fisiologia , Termotolerância , Animais , Temperatura Alta , Estações do AnoRESUMO
Alkylated polycyclic aromatic hydrocarbons are abundant in crude oil and are enriched during petroleum refinement but knowledge of their cardiotoxicity remains limited. Polycyclic aromatic hydrocarbons (PAHs) are considered the main hazardous components in crude oil and the tricyclic PAH phenanthrene has been singled out for its direct effects on cardiac tissue in mammals and fish. Here we test the impact of the monomethylated phenanthrene, 3-methylphenanthrene (3-MP), on the contractile and electrical function of the atrium and ventricle of a polar fish, the navaga cod (Eleginus nawaga). Using patch-clamp electrophysiology in atrial and ventricular cardiomyocytes we show that 3-MP is a potent inhibitor of the delayed rectifier current IKr (IC50 = 0.25 µM) and prolongs ventricular action potential duration. Unlike the parent compound phenanthrene, 3-MP did not reduce the amplitude of the L-type Ca2+ current (ICa) but it accelerated current inactivation thus reducing charge transfer across the myocyte membrane and compromising pressure development of the whole heart. 3-MP was a potent inhibitor (IC50 = 4.7 µM) of the sodium current (INa), slowing the upstroke of the action potential in isolated cells, slowing conduction velocity across the atrium measured with optical mapping, and increasing atrio-ventricular delay in a working whole heart preparation. Together, these findings reveal the strong cardiotoxic potential of this phenanthrene derivative on the fish heart. As 3-MP and other alkylated phenanthrenes comprise a large fraction of the PAHs in crude oil mixtures, these findings are worrisome for Arctic species facing increasing incidence of spills and leaks from the petroleum industry. 3-MP is also a major component of polluted air but is not routinely measured. This is also of concern if the hearts of humans and other terrestrial animals respond to this PAH in a similar manner to fish.
Assuntos
Coração , Miócitos Cardíacos , Fenantrenos , Animais , Fenantrenos/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Coração/efeitos dos fármacos , Coração/fisiologia , Potenciais de Ação/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Perciformes/fisiologiaRESUMO
Cavutilide (niferidil, refralon) is a new class III antiarrhythmic drug which effectively terminates persistent atrial fibrillation (AF; 84.6% of patients, mean AF duration 3 months) and demonstrates low risk of torsade de pointes (1.7%). ERG channels of rapid delayed rectifier current(IKr) are the primary target of cavutilide, but the particular reasons of higher effectiveness and lower proarrhythmic risk in comparison with other class III IKr blockers are unclear. The inhibition of hERG channels expressed in CHO-K1 cells by cavutilide was studied using whole-cell patch-clamp. The present study demonstrates high sensitivity of IhERG expressed in CHO-K1 cells to cavutilide (IC50 = 12.8 nM). Similarly to methanesulfonanilide class III agents, but unlike amiodarone and related drugs, cavutilide does not bind to hERG channels in their resting state. However, in contrast to dofetilide, cavutilide binds not only to opened, but also to inactivated channels. Moreover, at positive constantly set membrane potential (+ 60 mV) inhibition of IhERG by 100 nM cavutilide develops faster than at 0 mV and, especially, - 30 mV (τ of inhibition was 78.8, 103, and 153 ms, respectively). Thereby, cavutilide produces IhERG inhibition only when the cell is depolarized. During the same period of time, cavutilide produces greater block of IhERG when the cell is depolarized with 2 Hz frequency, if compared to 0.2 Hz. We suggest that, during the limited time after injection, cavutilide produces stronger inhibition of IKr in fibrillating atrium than in non-fibrillating ventricle. This leads to beneficial combination of antiarrhythmic effectiveness and low proarrhythmicity of cavutilide.
Assuntos
Antiarrítmicos , Canal de Potássio ERG1 , Animais , Cricetinae , Humanos , Antiarrítmicos/farmacologia , Células CHO , Cricetulus , Canal de Potássio ERG1/antagonistas & inibidores , Canal de Potássio ERG1/metabolismo , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/metabolismo , Técnicas de Patch-Clamp , Fenetilaminas/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Sulfonamidas/farmacologiaRESUMO
The release of polycyclic aromatic hydrocarbons (PAHs) into the environment due to oil and diesel fuel spills is a serious threat to Arctic fish populations. PAHs produce multiple toxic effects in fish, but disturbance of electrical and contractile activity of the heart seems to be the most negative effect. Our study focused on the effects of fluorene, a tricyclic PAH resembling the well-investigated tricyclic phenanthrene, on major ionic currents and action potential (AP) waveform in isolated ventricular myocytes and on contractile activity in isolated whole hearts of polar navaga cod (Eleginus nawaga). Among the studied currents, the repolarizing rapid delayed rectifier K+ current IKr demonstrated the highest sensitivity to fluorene with IC50 of 0.54 µM. The depolarizing inward currents, INa and ICaL, were inhibited with 10 µM fluorene by 20.2 ± 2.8 % and 27.9 ± 8.4 %, respectively, thereby being much less sensitive to fluorene than IKr. Inward rectifier IK1 current was insensitive to fluorene (up to 10 µM). While 3 µM fluorene prolonged APs, 10 µM also slowed the AP upstroke. Resting membrane potential was not affected by any tested concentrations. In isolated heart experiments 10 µM fluorene caused modest depression of ventricular contractile activity. Thus, we have demonstrated that fluorene, a tricyclic PAH present in high quantities in crude oil, strongly impacts electrical activity with only slight effects on contractile activity in the heart of the polar fish, the navaga cod.
Assuntos
Gadiformes , Hidrocarbonetos Policíclicos Aromáticos , Animais , Ventrículos do Coração , Fluorenos/toxicidade , Hidrocarbonetos , Miócitos CardíacosRESUMO
BACKGROUND: The three-ringed polycyclic aromatic hydrocarbon (PAH) phenanthrene (Phe) has been implicated in the cardiotoxicity of petroleum-based pollution in aquatic systems, where it disrupts the contractile and electrical function of the fish heart. Phe is also found adsorbed to particulate matter and in the gas phase of air pollution, but to date, no studies have investigated the impact of Phe on mammalian cardiac function. OBJECTIVES: Our objectives were to determine the arrhythmogenic potential of acute Phe exposure on mammalian cardiac function and define the underlying mechanisms to provide insight into the toxicity risk to humans. METHODS: Ex vivo Langendorff-perfused mouse hearts were used to test the arrhythmogenic potential of Phe on myocardial function, and voltage- and current-clamp recordings were used to define underlying cellular mechanisms in isolated cardiomyocytes. RESULTS: Mouse hearts exposed to â¼8µM Phe for 15-min exhibited a significantly slower heart rate (p=0.0006, N=10 hearts), a prolonged PR interval (p=0.036, N=8 hearts), and a slower conduction velocity (p=0.0143, N=7 hearts). Whole-cell recordings from isolated cardiomyocytes revealed action potential (AP) duration prolongation (at 80% repolarization; p=0.0408, n=9 cells) and inhibition of key murine repolarizing currents-transient outward potassium current (Ito) and ultrarapid potassium current (IKur)-following Phe exposure. A significant reduction in AP upstroke velocity (p=0.0445, n=9 cells) and inhibition of the fast sodium current (INa; p=0.001, n=8 cells) and calcium current (ICa; p=0.0001) were also observed, explaining the slowed conduction velocity in intact hearts. Finally, acute exposure to â¼8µM Phe significantly increased susceptibility to arrhythmias (p=0.0455, N=9 hearts). DISCUSSION: To the best of our knowledge, this is the first evidence of direct inhibitory effects of Phe on mammalian cardiac electrical activity at both the whole-heart and cell levels. This electrical dysfunction manifested as an increase in arrhythmia susceptibility due to impairment of both conduction and repolarization. Similar effects in humans could have serious health consequences, warranting greater regulatory attention and toxicological investigation into this ubiquitous PAH pollutant generated from fossil-fuel combustion. https://doi.org/10.1289/EHP12775.
Assuntos
Poluentes Atmosféricos , Fenantrenos , Humanos , Camundongos , Animais , Poluentes Atmosféricos/toxicidade , Arritmias Cardíacas/induzido quimicamente , Miócitos Cardíacos , Potenciais de Ação , Modelos Animais de Doenças , Fenantrenos/toxicidade , Potássio/farmacologia , MamíferosRESUMO
The development of interatrial septum (IAS) is a complicated process, which continues during postnatal life. The hypertrophic signals in developing heart are mediated among others by α-adrenergic pathways. These facts suggest the presence of specific electrophysiological features in developing IAS. This study was aimed to investigate the electrical activity in the tissue preparations of IAS from rat heart in normal conditions and under stimulation of adrenoreceptors. Intracellular recording of electrical activity revealed less negative level of resting membrane potential in IAS if compared to myocardium of left atrium. In normal conditions, non-paced IAS preparations were quiescent, but noradrenaline (10-5 M) and phenylephrine (10-5 M) induced spontaneous action potentials, which could be abolished by α1-blocker prazosin (10-5 M), but not ß1-blocker atenolol (10-5 M). Optical mapping showed drastic phenylephrine-induced slowing of conduction in adult rat IAS. The α1-dependent ectopic automaticity of IAS myocardium might be explained by immunohistochemical data indicating the presence of transcription factor GATA4 and abundant α1A-adrenoreceptors in myocytes from adult rat IAS. An elevated sensitivity to adrenergic stimulation due to involvement of α1-adrenergic pathways may underlie increased proarrhythmic potential of adult IAS at least in rats.
Assuntos
Prazosina , Receptores Adrenérgicos alfa 1 , Ratos , Animais , Receptores Adrenérgicos alfa 1/metabolismo , Prazosina/farmacologia , Fenilefrina/farmacologia , Átrios do Coração/metabolismo , Adrenérgicos , Fator de Transcrição GATA4/genéticaRESUMO
Ageing is a complex process which affects all systems of the organism and therefore changes the environment where the heart is working. In this study we demonstrate the ageing-related changes in the mechanisms of parasympathetic regulation of mammalian heart. Electrophysiological effects produced by selective activation of M3-cholinoreceptors were compared in isolated cardiac preparations from young adult (4 months), adult (1 year) and ageing (2 years) rats using sharp glass microelectrode technique. M3-receptors were activated with muscarinic agonist pilocarpine (10-5M) in the presence of selective M2 antagonist AQ-RA741 (10-7M). In atrial and ventricular myocardium from young rats M3 stimulation induced shortening of action potentials(APs), while no significant effect was observed in both elder groups. The main mechanism of M3-induced AP shortening is inhibition of L-type Ca2+ current, estimated using whole-cell patch-clamp. It was negligible in atrial myocytes from ageing animals in comparison with young rats. The loss of sensitivity to stimulation of M3-receptors is due to decrease in M3 gene expression, shown by RT-PCR both in atrial and ventricular samples from ageing rats. Thus, in ageing rat heart M3-receptors are down-regulated and not involved in regulation of electrical activity.
RESUMO
The mechanoelectrical feedback (MEF) mechanism in the heart that plays a significant role in the occurrence of arrhythmias, involves cation flux through cation nonselective stretch-activated channels (SACs). It is well known that nitric oxide (NO) can act as a regulator of MEF. Here we addressed the possibility of SAC's regulation along NO-dependent and NO-independent pathways, as well as the possibility of S-nitrosylation of SACs. In freshly isolated rat ventricular cardiomyocytes, using the patch-clamp method in whole-cell configuration, inward nonselective stretch-activated cation current ISAC was recorded through SACs, which occurs during dosed cell stretching. NO donor SNAP, α1-subunit of sGC activator BAY41-2272, sGC blocker ODQ, PKG blocker KT5823, PKG activator 8Br-cGMP, and S-nitrosylation blocker ascorbic acid, were employed. We concluded that the physiological concentration of NO in the cell is a necessary condition for the functioning of SACs. An increase in NO due to SNAP in an unstretched cell causes the appearance of a Gd3+ -sensitive nonselective cation current, an analog of ISAC , while in a stretched cell it eliminates ISAC . The NO-independent pathway of sGC activation of α subunit, triggered by BAY41-2272, is also important for the regulation of SACs. Since S-nitrosylation inhibitor completely abolishes ISAC , this mechanism occurs. The application of BAY41-2272 cannot induce ISAC in a nonstretched cell; however, the addition of SNAP on its background activates SACs, rather due to S-nitrosylation. ODQ eliminates ISAC , but SNAP added on the background of stretch increases ISAC in addition to ODQ. This may be a result of the lack of NO as a result of inhibition of NOS by metabolically modified ODQ. KT5823 reduces PKG activity and reduces SACs phosphorylation, leading to an increase in ISAC . 8Br-cGMP reduces ISAC by activating PKG and its phosphorylation. These results demonstrate a significant contribution of S-nitrosylation to the regulation of SACs.
Assuntos
Miócitos Cardíacos , Óxido Nítrico , Animais , Sítios de Ligação , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Guanilato Ciclase/metabolismo , Miócitos Cardíacos/metabolismo , Óxido Nítrico/metabolismo , RatosRESUMO
Small G-proteins of Rho family modulate the activity of several classes of ion channels, including K+ channels Kv1.2, Kir2.1, and ERG; Ca2+ channels; and epithelial Na+ channels. The present study was aimed to check the RhoA potential regulatory effects on Na+ current (INa) transferred by Na+ channel cardiac isoform NaV1.5 in heterologous expression system and in native rat cardiomyocytes. Whole-cell patch-clamp experiments showed that coexpression of NaV1.5 with the wild-type RhoA in CHO-K1 cell line caused 2.7-fold decrease of INa density with minimal influence on steady-state activation and inactivation. This effect was reproduced by the coexpression with a constitutively active RhoA, but not with a dominant negative RhoA. In isolated ventricular rat cardiomyocytes, a 5-h incubation with the RhoA activator narciclasine (5 × 10-6 M) reduced the maximal INa density by 38.8%. The RhoA-selective inhibitor rhosin (10-5 M) increased the maximal INa density by 25.3%. Experiments with sharp microelectrode recordings in isolated right ventricular wall preparations showed that 5 × 10-6 M narciclasine induced a significant reduction of action potential upstroke velocity after 2 h of incubation. Thus, RhoA might be considered as a potential negative regulator of sodium channels cardiac isoform NaV1.5.
Assuntos
Miócitos Cardíacos/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Sódio/metabolismo , Proteínas rho de Ligação ao GTP/fisiologia , Potenciais de Ação , Animais , Células CHO , Cricetulus , Masculino , Ratos , Ratos WistarRESUMO
Mir-133a-3p is the most abundant myocardial microRNA. The impact of mir-133a-3p on cardiac electrophysiology is poorly explored. In this study, we investigated the effects of mir-133a-3p on the main ionic currents critical for action potential (AP) generation and electrical activity of the heart. We used conventional ECG, sharp microelectrodes and patch-clamp to clarify a role of mir-133a-3p in normal cardiac electrophysiology in rats after in vivo and in vitro transfection. Mir-133a-3p caused no changes to pacemaker APs and automaticity in the sinoatrial node. No significant changes in heart rate (HR) were observed in vivo; however, miR transfection facilitated HR increase in response to ß-adrenergic stimulation. Mir-133a-3p induced repolarization abnormalities in the atrial working myocardium and the L-type calcium current (ICa,L) was significantly increased. The main repolarization currents, including the transient outward (Ito), ultra-rapid (IK,ur), and inward rectifier (IK1) remained unaffected in atrial cardiomyocytes. Mir-133a-3p affected both ICa,L and Ito in ventricular cardiomyocytes. Systemic administration of mir-133a-3p induced QT-interval prolongation. Bioinformatic analysis revealed protein phosphatase 2 (PPP2CA/B) and Kcnd3 (encoding Kv4.3 channels generating Ito) as the main miR-133a-3p targets in the heart. No changes in mRNA expression of Cacna1c (encoding Cav1.2 channels generating ICa,L) and Kcnd3 were seen in mir-133a-3p treated rats. However, the expression of Ppp2cA, encoding PPP2CA, and Kcnip2 encoding KChIP2, a Kv4.3 regulatory protein, were significantly decreased. The accumulation of mir-133a-3p in cardiac myocytes causes chamber-specific electrophysiological changes. The suppression of PPP2CA, involved in adrenergic signal transduction, and Kchip2 may indirectly mediate mir-133a-3p-induced augmentation of ICa,L and attenuation of Ito.
Assuntos
Miocárdio , Animais , Ventrículos do Coração , RatosRESUMO
AIM: This study is aimed at investigation of electrophysiological effects of α1-adrenoreceptor (α1-AR) stimulation in the rat superior vena cava (SVC) myocardium, which is one of the sources of proarrhythmic activity. METHODS: α1-ARs agonists (phenylephrine-PHE or norepinephrine in presence of atenolol-NE + ATL) were applied to SVC and atrial tissue preparations or isolated cardiomyocytes, which were examined using optical mapping, glass microelectrodes or whole-cell patch clamp. α1-ARs distribution was evaluated using immunofluorescence. Kir2.X mRNA and protein level were estimated using RT-PCR and Western blotting. RESULTS: PHE or NE + ATL application caused a significant suppression of the conduction velocity (CV) of excitation and inexcitability in SVC, an increase in the duration of electrically evoked action potentials (APs), a decrease in the maximum upstroke velocity (dV/dtmax ) and depolarization of the resting membrane potential (RMP) in SVC to a greater extent than in atria. The effects induced by α1-ARs activation in SVC were attenuated by protein kinase C inhibition (PKC). The whole-cell patch clamp revealed PHE-induced suppression of outward component of IK1 inward rectifier current in isolated SVC, but not atrial myocytes. These effects can be mediated by α1A subtype of α-ARs found in abundance in rat SVC. The basal IK1 level in SVC was much lower than in atria as a result of the weaker expression of Kir2.2 channels. CONCLUSION: Therefore, the reduced density of IK1 in rat SVC cardiomyocytes and sensitivity of this current to α1A-AR stimulation via PKC-dependent pathways might lead to proarrhythmic conduction in SVC myocardium by inducing RMP depolarization, AP prolongation, CV and dV/dtmax decrease.
Assuntos
Potássio , Receptores Adrenérgicos alfa 1 , Veia Cava Superior , Potenciais de Ação , Animais , Átrios do Coração , Miocárdio , RatosRESUMO
Diadenosine pentaphosphate (Ap5A) belongs to the family of diadenosine polyphosphates, endogenously produced compounds that affect vascular tone and cardiac performance when released from platelets. The previous findings indicate that Ap5A shortens action potentials (APs) in rat myocardium via activation of purine P2 receptors. The present study demonstrates alternative mechanism of Ap5A electrophysiological effects found in guinea pig myocardium. Ap5A (10-4 M) shortens APs in guinea pig working atrial myocardium and slows down pacemaker activity in the sinoatrial node. P1 receptors antagonist DPCPX (10-7 M) or selective GIRK channels blocker tertiapin (10-6 M) completely abolished all Ap5A effects, while P2 blocker PPADS (10-4 M) was ineffective. Patch-clamp experiments revealed potassium inward rectifier current activated by Ap5A in guinea pig atrial myocytes. The current was abolished by DPCPX or tertiapin and therefore was considered as potassium acetylcholine-dependent inward rectifier (I KACh). Thus, unlike rat, in guinea pig atrium Ap5A produces activation of P1 receptors and subsequent opening of KACh channels leading to negative effects on cardiac electrical activity.
Assuntos
Acetilcolina/metabolismo , Função Atrial/efeitos dos fármacos , Fosfatos de Dinucleosídeos/farmacologia , Átrios do Coração/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/agonistas , Potássio/metabolismo , Potenciais de Ação , Animais , Cobaias , Átrios do Coração/metabolismo , Masculino , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Agonistas do Receptor Purinérgico P1/farmacologia , Receptores Purinérgicos P1/efeitos dos fármacos , Receptores Purinérgicos P1/metabolismo , Especificidade da Espécie , Fatores de TempoRESUMO
Electrophysiological effects produced by selective activation of M3 cholinoreceptors were studied in isolated left atrium preparations from rat using the standard sharp glass microelectrode technique. The stimulation of M3 receptors was obtained by application of muscarinic agonist pilocarpine (10-5 M) in the presence of selective M2 antagonist methoctramine (10-7 M). Stimulation of M3 receptors induced marked reduction of action potential duration by 14.4 ± 2.4% and 16.1 ± 2.5% of control duration measured at 50 and 90% of repolarization, respectively. This effect was completely abolished by selective M3 blocker 4-DAMP (10-8 M). In isolated myocytes obtained from the rat left atrium, similar pharmacological stimulation of M3 receptors led to suppression of peak L-type calcium current by 13.9 ± 2.6% of control amplitude (measured at +10 mV), but failed to affect K+ currents I to, I Kur, and I Kir. In the absence of M2 blocker methoctramine, pilocarpine (10-5 M) produced stronger attenuation of I CaL and induced an increase in I Kir. This additive inward rectifier current could be abolished by highly selective blocker of Kir3.1/3.4 channels tertiapin-Q (10-6 M) and therefore was identified as I KACh. Thus, in the rat atrial myocardium activation of M3 receptors leads to shortening of action potentials via suppression of I CaL, but does not enhance the major potassium currents involved in repolarization. Joint stimulation of M2 and M3 receptors produces stronger action potential shortening due to M2-mediated activation of I KACh.
Assuntos
Canais de Cálcio Tipo L/metabolismo , Regulação para Baixo , Átrios do Coração/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptor Muscarínico M3/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Animais não Endogâmicos , Canais de Cálcio Tipo L/química , Fármacos Cardiovasculares/farmacologia , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Escina/farmacologia , Átrios do Coração/citologia , Átrios do Coração/efeitos dos fármacos , Técnicas In Vitro , Camundongos , Microeletrodos , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/agonistas , Canais de Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/agonistas , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Ratos , Receptor Muscarínico M3/agonistas , Receptor Muscarínico M3/antagonistas & inibidoresRESUMO
The development of interatrial septum (IAS) is a complicated process, which continues during postnatal life. The hypertrophic signals in developing heart are mediated among others by α-adrenergic pathways. These facts suggest the presence of specific electrophysiological features in developing IAS. This study was aimed to investigate the electrical activity in the tissue preparations of IAS from rat heart in normal conditions and under stimulation of adrenoreceptors. Intracellular recording of electrical activity revealed less negative level of resting membrane potential in IAS if compared to myocardium of left atrium. In normal conditions, non-paced IAS preparations were quiescent, but noradrenaline (10−5 M) and phenylephrine (10−5 M) induced spontaneous action potentials, which could be abolished by α1-blocker prazosin (10−5 M), but not β1-blocker atenolol (10−5 M). Optical mapping showed drastic phenylephrine-induced slowing of conduction in adult rat IAS. The α1-dependent ectopic automaticity of IAS myocardium might be explained by immunohistochemical data indicating the presence of transcription factor GATA4 and abundant α1A-adrenoreceptors in myocytes from adult rat IAS. An elevated sensitivity to adrenergic stimulation due to involvement of α1-adrenergic pathways may underlie increased proarrhythmic potential of adult IAS at least in rats. (AU)
Assuntos
Animais , Ratos , Prazosina/farmacocinética , Receptores Adrenérgicos alfa 1/metabolismo , Fenilefrina/farmacologia , Átrios do Coração/metabolismo , Fator de Transcrição GATA4/genética , AdrenérgicosRESUMO
Electrophysiological effects produced by selective activation of M3 cholinoreceptors were studied in isolated left atrium preparations from rat using the standard sharp glass microelectrode technique. The stimulation of M3 receptors was obtained by application of muscarinic agonist pilocarpine (10-5 M) in the presence of selective M2 antagonist methoctramine (10-7 M). Stimulation of M3 receptors induced marked reduction of action potential duration by 14.4 ± 2.4% and 16.1 ± 2.5% of control duration measured at 50 and 90% of repolarization, respectively. This effect was completely abolished by selective M3 blocker 4-DAMP (10-8 M). In isolated myocytes obtained from the rat left atrium, similar pharmacological stimulation of M3 receptors led to suppression of peak L-type calcium current by 13.9 ± 2.6% of control amplitude (measured at +10 mV), but failed to affect K+ currents Ito, IKur, and IKir. In the absence of M2 blocker methoctramine, pilocarpine (10-5 M) produced stronger attenuation of ICaL and induced an increase in IKir. This additive inward rectifier current could be abolished by highly selective blocker of Kir3.1/3.4 channels tertiapin-Q (10-6 M) and therefore was identified as IKACh. Thus, in the rat atrial myocardium activation of M3 receptors leads to shortening of action potentials via suppression of ICaL, but does not enhance the major potassium currents involved in repolarization. Joint stimulation of M2 and M3 receptors produces stronger action potential shortening due to M2-mediated activation of IKACh (AU)
No disponible