Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Int J Mol Sci ; 21(11)2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32521803

RESUMO

Maternal immune activation (MIA), induced by infection during pregnancy, is an important risk factor for neuro-developmental disorders, such as autism. Abnormal maternal cytokine signaling may affect fetal brain development and contribute to neurobiological and behavioral changes in the offspring. Here, we examined the effect of lipopolysaccharide-induced MIA on neuro-inflammatory changes, as well as synaptic morphology and key synaptic protein level in cerebral cortex of adolescent male rat offspring. Adolescent MIA offspring showed elevated blood cytokine levels, microglial activation, increased pro-inflammatory cytokines expression and increased oxidative stress in the cerebral cortex. Moreover, pathological changes in synaptic ultrastructure of MIA offspring was detected, along with presynaptic protein deficits and down-regulation of postsynaptic scaffolding proteins. Consequently, ability to unveil MIA-induced long-term alterations in synapses structure and protein level may have consequences on postnatal behavioral changes, associated with, and predisposed to, the development of neuropsychiatric disorders.


Assuntos
Córtex Cerebral/imunologia , Córtex Cerebral/metabolismo , Encefalite/etiologia , Encefalite/metabolismo , Imunidade , Exposição Materna , Efeitos Tardios da Exposição Pré-Natal , Sinapses/metabolismo , Fatores Etários , Animais , Transtorno Autístico/etiologia , Transtorno Autístico/metabolismo , Transtorno Autístico/psicologia , Comportamento Animal , Córtex Cerebral/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Encefalite/patologia , Feminino , Lipopolissacarídeos/efeitos adversos , Exposição Materna/efeitos adversos , Estresse Oxidativo , Fenótipo , Gravidez , Ratos
2.
Neurochem Res ; 41(1-2): 376-84, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26801175

RESUMO

Cerebral oxidative stress (OS) contributes to the pathogenesis of hepatic encephalopathy (HE). Existing evidence suggests that systemic administration of L-histidine (His) attenuates OS in brain of HE animal models, but the underlying mechanism is complex and not sufficiently understood. Here we tested the hypothesis that dipeptide carnosine (ß-alanyl-L-histidine, Car) may be neuroprotective in thioacetamide (TAA)-induced liver failure in rats and that, being His metabolite, may mediate the well documented anti-OS activity of His. Amino acids [His or Car (100 mg/kg)] were administrated 2 h before TAA (i.p., 300 mg/kg 3× in 24 h intervals) injection into Sprague-Dawley rats. The animals were thus tested for: (i) brain prefrontal cortex and blood contents of Car and His, (ii) amount of reactive oxygen species (ROS), total antioxidant capacity (TAC), GSSG/GSH ratio and thioredoxin reductase (TRx) activity, and (iii) behavioral changes (several models were used, i.e. tests for reflexes, open field, grip test, Rotarod). Brain level of Car was reduced in TAA rats, and His administration significantly elevated Car levels in control and TAA rats. Car partly attenuated TAA-induced ROS production and reduced GSH/GSSG ratio, whereas the increase of TRx activity in TAA brain was not significantly modulated by Car. Further, Car improved TAA-affected behavioral functions in rats, as was shown by the tests of righting and postural reflexes. Collectively, the results support the hypothesis that (i) Car may be added to the list of neuroprotective compounds of therapeutic potential on HE and that (ii) Car mediates at least a portion of the OS-attenuating activity of His in the setting of TAA-induced liver failure.


Assuntos
Carnosina/farmacologia , Falência Hepática/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Postura , Tioacetamida/toxicidade , Animais , Falência Hepática/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley
3.
Development ; 138(16): 3463-72, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21771816

RESUMO

The progenitors of cerebellar GABAergic interneurons proliferate up to postnatal development in the prospective white matter, where they give rise to different neuronal subtypes, in defined quantities and according to precise spatiotemporal sequences. To investigate the mechanisms that regulate the specification of distinct interneuron phenotypes, we examined mice lacking the G1 phase-active cyclin D2. It has been reported that these mice show severe reduction of stellate cells, the last generated interneuron subtype. We found that loss of cyclin D2 actually impairs the whole process of interneuron genesis. In the mutant cerebella, progenitors of the prospective white matter show reduced proliferation rates and enhanced tendency to leave the cycle, whereas young postmitotic interneurons undergo severe delay of their maturation and migration. As a consequence, the progenitor pool is precociously exhausted and the number of interneurons is significantly reduced, although molecular layer interneurons are more affected than those of granular layer or deep nuclei. The characteristic inside-out sequence of interneuron placement in the cortical layers is also reversed, so that later born cells occupy deeper positions than earlier generated ones. Transplantation experiments show that the abnormalities of cyclin D2(-/-) interneurons are largely caused by cell-autonomous mechanisms. Therefore, cyclin D2 is not required for the specification of particular interneuron subtypes. Loss of this protein, however, disrupts regulatory mechanisms of cell cycle dynamics that are required to determine the numbers of interneurons of different types and impairs their rhythm of maturation and integration in the cerebellar circuitry.


Assuntos
Encéfalo/metabolismo , Ciclo Celular , Ciclina D2/metabolismo , Interneurônios/citologia , Interneurônios/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Movimento Celular , Ciclina D2/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
PLoS One ; 19(2): e0297174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38335191

RESUMO

Rats are social animals that use ultrasonic vocalizations (USV) in their intraspecific communication. Several types of USV have been previously described, e.g., appetitive 50-kHz USV and aversive short 22-kHz USV. It is not fully understood which aspects of the USV repertoire play important functions during rat ultrasonic exchange. Here, we investigated features of USV emitted by rats trained in operant conditioning, is a form of associative learning between behavior and its consequences, to reinforce the production/emission of 50-kHz USV. Twenty percent of the trained rats learned to vocalize to receive a reward according to an arbitrarily set criterion, i.e., reaching the maximum number of proper responses by the end of each of the last three USV-training sessions, as well as according to a set of measurements independent from the criterion (e.g., shortening of training sessions). Over the training days, these rats also exhibited: an increasing percentage of rewarded 50-kHz calls, lengthening and amplitude-increasing of 50-kHz calls, and decreasing number of short 22-kHz calls. As a result, the potentially learning rats, when compared to non-learning rats, displayed shorter training sessions and different USV structure, i.e. higher call rates, more rewarded 50-kHz calls, longer and louder 50-kHz calls and fewer short 22-kHz calls. Finally, we reviewed the current literature knowledge regarding different lengths of 50-kHz calls in different behavioral contexts, the potential function of short 22-kHz calls as well as speculate that USV may not easily become an operant response due to their primary biological role, i.e., communication of emotional state between conspecifics.


Assuntos
Afeto , Vocalização Animal , Ratos , Animais , Vocalização Animal/fisiologia , Ultrassom , Emoções , Recompensa
5.
Artigo em Inglês | MEDLINE | ID: mdl-36007820

RESUMO

Many symptoms used routinely for human psychiatric diagnosis cannot be directly observed in animals which cannot describe their internal states. However, the ultrasonic vocalizations (USV) rodents use to communicate their emotional states can be measured. USV have therefore become a particularly useful tool in brain disease models. Spontaneously hypertensive rats (SHR) are considered an animal model of attention deficit hyperactivity disorder (ADHD) and schizophrenia. However, the specifics of SHR's behavior have not been fully described and there is very little data on their USV. Recently, we developed a communication model, in which Wistar rats are exposed to pre-recorded playbacks of aversive (22-kHz) or appetitive (50-kHz) USV, and their vocal responses depend on the extent of prior fear conditioning (0, 1, 6 or 10 shocks). Here, we investigated SHR's behavior and heart rate (HR) in our communication model, in comparison to Wistar rats employed as controls. In general, SHR emitted typical USV categories, however, they contained more short 22-kHz and less 50-kHz USV overall. Moreover, fewer SHR, in comparison with Wistar rats, emitted long 22-kHz USV after fear conditioning. SHR did not show a 50-kHz playback-induced HR increase, while they showed a profound 22-kHz playback-induced HR decrease. Finally, the number of previously delivered conditioning shocks appeared to have no effect on the investigated vocal, locomotor and HR responses of SHR. The phenomena observed in SHR are potentially attributable to deficits in emotional perception and processing. A lower number of 50-kHz USV emitted by SHR may reflect observations of speech impairments in human patients and further supports the usefulness of SHR to model ADHD and schizophrenia.


Assuntos
Ultrassom , Vocalização Animal , Humanos , Ratos , Animais , Ratos Wistar , Ratos Endogâmicos SHR , Emoções , Roedores
6.
J Cell Mol Med ; 16(9): 1961-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22348642

RESUMO

The interaction between depression and stroke is highly complex. Post-stroke depression (PSD) is among the most frequent neuropsychiatric consequences of stroke. Depression also negatively impacts stroke outcome with increased morbidity, mortality and poorer functional recovery. Antidepressants such as the commonly prescribed selective serotonin reuptake inhibitors improve stroke outcome, an effect that may extend far beyond depression, e.g., to motor recovery. The main biological theory of PSD is the amine hypothesis. Conceivably, ischaemic lesions interrupt the projections ascending from midbrain and brainstem, leading to a decreased bioavailability of the biogenic amines--serotonin (5HT), dopamine (DA) and norepinephrine (NE). Acetylcholine would also be involved. So far, preclinical and translational research on PSD is largely lacking. The implementation and characterization of suitable animal models is clearly a major prerequisite for deeper insights into the biological basis of post-stroke mood disturbances. Equally importantly, experimental models may also pave the way for the discovery of novel therapeutic targets. If we cannot prevent stroke, we shall try to limit its long-term consequences. This review therefore presents animal models of PSD and summarizes potential underlying mechanisms including genomic signatures, neurotransmitter and neurotrophin signalling, hippocampal neurogenesis, cellular plasticity in the ischaemic lesion, secondary degenerative changes, activation of the hypothalamo-pituitary-adrenal (HPA) axis and neuroinflammation. As stroke is a disease of the elderly, great clinical benefit may especially accrue from deciphering and targeting basic mechanisms underlying PSD in aged animals.


Assuntos
Envelhecimento , Depressão/diagnóstico , Depressão/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/psicologia , Acetilcolina/uso terapêutico , Animais , Antidepressivos/uso terapêutico , Depressão/complicações , Depressão/terapia , Modelos Animais de Doenças , Dopamina/uso terapêutico , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Humanos , Norepinefrina/uso terapêutico , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Acidente Vascular Cerebral/complicações , Transmissão Sináptica
7.
Cell Rep ; 38(11): 110532, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35294881

RESUMO

Major depressive disorder is a complex disease resulting from aberrant synaptic plasticity that may be caused by abnormal serotonergic signaling. Using a combination of behavioral, biochemical, and imaging methods, we analyze 5-HT7R/MMP-9 signaling and dendritic spine plasticity in the hippocampus in mice treated with the selective 5-HT7R agonist (LP-211) and in a model of chronic unpredictable stress (CUS)-induced depressive-like behavior. We show that acute 5-HT7R activation induces depressive-like behavior in mice in an MMP-9-dependent manner and that post mortem brain samples from human individuals with depression reveal increased MMP-9 enzymatic activity in the hippocampus. Both pharmacological activation of 5-HT7R and modulation of its downstream effectors as a result of CUS lead to dendritic spine elongation and decreased spine density in this region. Overall, the 5-HT7R/MMP-9 pathway is specifically activated in the CA1 subregion of the hippocampus during chronic stress and is crucial for inducing depressive-like behavior.


Assuntos
Região CA1 Hipocampal , Transtorno Depressivo Maior , Animais , Região CA1 Hipocampal/metabolismo , Transtorno Depressivo Maior/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Receptores de Serotonina/metabolismo
8.
J Neurosci ; 30(14): 4957-69, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20371816

RESUMO

beta-Catenin, together with LEF1/TCF transcription factors, activates genes involved in the proliferation and differentiation of neuronal precursor cells. In mature neurons, beta-catenin participates in dendritogenesis and synaptic function as a component of the cadherin cell adhesion complex. However, the transcriptional activity of beta-catenin in these cells remains elusive. In the present study, we found that in the adult mouse brain, beta-catenin and LEF1 accumulate in the nuclei of neurons specifically in the thalamus. The particular electrophysiological properties of thalamic neurons depend on T-type calcium channels. Cav3.1 is the predominant T-type channel subunit in the thalamus, and we hypothesized that the Cacna1g gene encoding Cav3.1 is a target of the LEF1/beta-catenin complex. We demonstrated that the expression of Cacna1g is high in the thalamus and is further increased in thalamic neurons treated in vitro with LiCl or WNT3A, activators of beta-catenin. Luciferase reporter assays confirmed that the Cacna1G promoter is activated by LEF1 and beta-catenin, and footprinting analysis revealed four LEF1 binding sites in the proximal region of this promoter. Chromatin immunoprecipitation demonstrated that the Cacna1g proximal promoter is occupied by beta-catenin in vivo in the thalamus, but not in the hippocampus. Moreover, WNT3A stimulation enhanced T-type current in cultured thalamic neurons. Together, our data indicate that the LEF1/beta-catenin complex regulates transcription of Cacna1g and uncover a novel function for beta-catenin in mature neurons. We propose that beta-catenin contributes to neuronal excitability not only by a local action at the synapse but also by activating gene expression in thalamic neurons.


Assuntos
Canais de Cálcio Tipo T/genética , Fator 1 de Ligação ao Facilitador Linfoide/fisiologia , Neurônios/fisiologia , Tálamo/fisiologia , Ativação Transcricional/fisiologia , beta Catenina/fisiologia , Fatores Etários , Animais , Canais de Cálcio Tipo T/biossíntese , Canais de Cálcio Tipo T/química , Células Cultivadas , Feminino , Células HeLa , Humanos , Fator 1 de Ligação ao Facilitador Linfoide/química , Masculino , Camundongos , Ratos , Sinapses/química , Sinapses/genética , Sinapses/metabolismo , beta Catenina/química
9.
Brain Sci ; 11(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34439589

RESUMO

We investigated the effects of prior stress on rats' responses to 50-kHz (appetitive) and 22-kHz (aversive) ultrasonic playback. Rats were treated with 0, 1, 6 or 10 shocks (1 s, 1.0 mA each) and were exposed to playbacks the following day. Previous findings were confirmed: (i) rats moved faster during 50-kHz playback and slowed down after 22-kHz playback; (ii) they all approached the speaker, which was more pronounced during and following 50-kHz playback than 22-kHz playback; (iii) 50-kHz playback caused heart rate (HR) increase; 22-kHz playback caused HR decrease; (iv) the rats vocalized more often during and following 50-kHz playback than 22-kHz playback. The previous shock affected the rats such that singly-shocked rats showed lower HR throughout the experiment and a smaller HR response to 50-kHz playback compared to controls and other shocked groups. Interestingly, all pre-shocked rats showed higher locomotor activity during 50-kHz playback and a more significant decrease in activity following 22-kHz playback; they vocalized more often, their ultrasonic vocalizations (USV) were longer and at a higher frequency than those of the control animals. These last two observations could point to hypervigilance, a symptom of post-traumatic stress disorder (PTSD) in human patients. Increased vocalization may be a valuable measure of hypervigilance used for PTSD modeling.

10.
Learn Mem ; 16(7): 439-51, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19553382

RESUMO

The role of adult brain neurogenesis (generating new neurons) in learning and memory appears to be quite firmly established in spite of some criticism and lack of understanding of what the new neurons serve the brain for. Also, the few experiments showing that blocking adult neurogenesis causes learning deficits used irradiation and various drugs known for their side effects and the results obtained vary greatly. We used a novel approach, cyclin D2 knockout mice (D2 KO mice), specifically lacking adult brain neurogenesis to verify its importance in learning and memory. D2 KO mice and their wild-type siblings were tested in several behavioral paradigms, including those in which the role of adult neurogenesis has been postulated. D2 KO mice showed no impairment in sensorimotor tests, with only sensory impairment in an olfaction-dependent task. However, D2 KO mice showed proper procedural learning as well as learning in context (including remote memory), cue, and trace fear conditioning, Morris water maze, novel object recognition test, and in a multifunctional behavioral system-IntelliCages. D2 KO mice also demonstrated correct reversal learning. Our results suggest that adult brain neurogenesis is not obligatory in learning, including the kinds of learning where the role of adult neurogenesis has previously been strongly suggested.


Assuntos
Ciclinas/deficiência , Hipocampo/citologia , Memória/fisiologia , Neurogênese/genética , Neurônios/fisiologia , Análise de Variância , Animais , Ansiedade/genética , Bromodesoxiuridina/metabolismo , Condicionamento Clássico/fisiologia , Condicionamento Operante/fisiologia , Ciclina D2 , Proteínas do Domínio Duplacortina , Comportamento Exploratório/fisiologia , Medo/fisiologia , Locomoção/genética , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo , Transtornos do Olfato/genética , Desempenho Psicomotor/fisiologia
11.
iScience ; 23(10): 101577, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33083743

RESUMO

Our rudimentary knowledge about rat intraspecific vocal system of information exchange is limited by experimental models of communication. Rats emit 50-kHz ultrasonic vocalizations in appetitive states and 22-kHz ones in aversive states. Both affective states influence heart rate. We propose a behavioral model employing exposure to pre-recorded playbacks in home-cage-like conditions. Fifty-kHz playbacks elicited the most vocalizations (>60 calls per minute, mostly of 50-kHz type), increased heart rate, and locomotor activity. In contrast, 22-kHz playback led to abrupt decrease in heart rate and locomotor activity. Observed effects were more pronounced in singly housed rats compared with the paired housed group; they were stronger when evoked by natural playback than by corresponding artificial tones. Finally, we also observed correlations between the number of vocalizations, heart rate levels, and locomotor activity. The correlations were especially strong in response to 50-kHz playback.

12.
J Cell Biol ; 167(2): 209-13, 2004 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-15504908

RESUMO

Adult neurogenesis (i.e., proliferation and differentiation of neuronal precursors in the adult brain) is responsible for adding new neurons in the dentate gyrus of the hippocampus and in the olfactory bulb. We describe herein that adult mice mutated in the cell cycle regulatory gene Ccnd2, encoding cyclin D2, lack newly born neurons in both of these brain structures. In contrast, genetic ablation of cyclin D1 does not affect adult neurogenesis. Furthermore, we show that cyclin D2 is the only D-type cyclin (out of D1, D2, and D3) expressed in dividing cells derived from neuronal precursors present in the adult hippocampus. In contrast, all three cyclin D mRNAs are present in the cultures derived from 5-day-old hippocampi, when developmental neurogenesis in the dentate gyrus takes place. Thus, our results reveal the existence of molecular mechanisms discriminating adult versus developmental neurogeneses.


Assuntos
Ciclinas/fisiologia , Neurônios/citologia , Animais , Encéfalo/metabolismo , Bromodesoxiuridina/farmacologia , Proliferação de Células , Ciclina D1/metabolismo , Ciclina D2 , Ciclinas/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Neurônios/metabolismo , Fenótipo , RNA/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
13.
Acta Neurobiol Exp (Wars) ; 79(3): 309-317, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31587023

RESUMO

We determined CA1 hippocampal field to be involved in self-exposure, a type of novelty­seeking behaviour that has also been associated with short 22 kHz and flat 50 kHz ultrasonic vocalizations (USV) in adult male Long-Evans rats. Rats were habituated for three days to a self-exposure cage with two nose-poke holes. On day four, the animals from the experimental group were allowed to turn the cage light off for 5 s with a nose­poke (test/self­exposure session), while rats from control-yoked group had changing light conditions coupled and identical to the experimental animals. The experimental rats performed more nose-pokes during self-exposure session than animals from the control group. This effect was accompanied by a higher density of c-Fos-positive nuclei in the hippocampal CA1. There were no significant group differences in c-Fos expression in other brain regions analysed. However, possible involvement of several other structures in self-exposure (i.e., CA3, the dentate gyrus, amygdala, prefrontal cortex, and nucleus accumbens) is also discussed, as their correlational activity, reflected by c-Fos immunoactivity, was observed in the experimental rats. During test sessions, there were more nose-pokes accompanied by short 22 kHz calls and 50 kHz calls performed by the rats of the experimental group than of the control group. The CA1 region has previously been associated with novelty; short 22 kHz USV and flat 50 kHz USV could be associated with self-exposure, also they appear to be emitted correlatively.


Assuntos
Comportamento Exploratório/fisiologia , Hipocampo/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Vocalização Animal/fisiologia , Tonsila do Cerebelo/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Masculino , Núcleo Accumbens/metabolismo , Ratos Long-Evans
14.
Neurotox Res ; 13(1): 19-30, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18367437

RESUMO

GLT1 is one of the major transporters responsible for maintenance of glutamate homeostasis in the brain. In the present study, glutamate transporter 1-deficient GLT1 homozygous (-/-) and heterozygous (+/-) mice were investigated with the intention that they may provide a model of hyperglutamatergic state resulting in various behavioral alterations. The GLT1 (-/-) mice had lower body and brain weight, mild neuronal loss in CA1 hippocampal region as well as focal gliosis and severe focal neuronal paucity in layer II of the neocortex. The short life-span of GLT1 (-/-) precluded us from systematic behavioral studies in these mice. In contrast, GLT1 (+/-) mice exhibiting a 59% decrease in GLT1 immunoreactivity in their brain tissue, showed no apparent morphological brain abnormalities, and their life-span was not markedly different from controls. Behaviorally, GLT1 (+/-) presented moderate behavioral alterations compared to their wildtype littermates, such as: mild sensorimotor impairment, hyperlocomotion (at 3 month of age only), lower anxiety (at 6 months), better learning of cue-based fear conditioning but worse context-based fear conditioning. Our results suggest that GLT1 (+/-) mice may serve as a potentially useful model to study neurodegenerative disease conditions with mild hyperglutamatergic activity.


Assuntos
Comportamento Animal/fisiologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Neurotoxinas/metabolismo , Animais , Tamanho Corporal , Condicionamento Psicológico/fisiologia , Modelos Animais de Doenças , Transportador 2 de Aminoácido Excitatório/genética , Comportamento Exploratório/fisiologia , Feminino , Imuno-Histoquímica , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Mutantes , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Reflexo/fisiologia
15.
Prog Neuropsychopharmacol Biol Psychiatry ; 80(Pt A): 63-67, 2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-28433461

RESUMO

The discovery of new neurons being produced in the brains of adult mammals (adult brain neurogenesis) began a quest to determine the function(s) of these cells. Major hypotheses in the field have assumed that these neurons play pivotal role, in particular, in learning and memory phenomena, mood control, and epileptogenesis. In our studies summarized herein, we used cyclin D2 knockout (KO) mice, as we have shown that cyclin D2 is the key factor in adult brain neurogenesis and thus its lack produces profound impairment of the process. On the other hand, developmental neurogenesis responsible for the brain formation depends only slightly on cyclin D2, as the mutants display minor structural abnormalities, such as smaller hippocampus and more severe disturbances in the structure of the olfactory bulbs. Surprisingly, the studies have revealed that cyclin D2 KO mice did not show major deficits in several behavioral paradigms assessing hippocampal learning and memory. Furthermore, missing adult brain neurogenesis affected neither action of antidepressants, nor epileptogenesis. On the other hand, minor deficits observed in cyclin D2 KO mice in fine tuning of cognitive functions, species-typical behaviors and alcohol consumption might be explained by a reduced hippocampal size and/or other developmentally driven brain impairments observed in these mutant mice. In aggregate, surprisingly, missing almost entirely adult brain neurogenesis produces only very limited behavioral phenotype that could be attributed to the consequences of the development-dependent minor brain abnormalities.


Assuntos
Comportamento Animal/fisiologia , Ciclina D2/fisiologia , Modelos Animais de Doenças , Hipocampo , Aprendizagem/fisiologia , Neurogênese/fisiologia , Animais , Ciclina D2/deficiência , Hipocampo/patologia , Hipocampo/fisiologia , Camundongos , Camundongos Knockout
16.
Mol Neurobiol ; 54(7): 5300-5318, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27578020

RESUMO

Neonatal hypoxic-ischemic (HI) injury still remains an important issue as it is a major cause of neonatal death and neurological dysfunctions. Currently, there are no well-established treatments to reduce brain damage and its long-term sequel in infants. Recently, reported data show that histone deacetylase inhibitors provide neuroprotection in adult stroke models. However, the proof of their relevance in vivo after neonatal HI brain injury remains particularly limited. In the present study, we show neuroprotective/neurogenic effect of sodium butyrate (SB), one of histone deacetylase inhibitors (HDACis), in the dentate gyrus of HI-injured immature rats. Postnatal day 7 (P7) rats underwent left carotid artery ligation followed by 7.6 % O2 exposure for 1 h. SB (300 mg/kg) was administered in a 5-day regime with the first injection given immediately after the onset of HI. The damage of the ipsilateral hemisphere was evaluated by weight deficit. Newly produced cells were labeled with BrdU, at 50 mg/kg, injected twice daily for 3 consecutive days. Subsequent differentiation of the newborn cells was investigated 2 and 4 weeks after the insult by immunohistochemistry using neuronal and glial cell-lineage markers and BrdU incorporation. Finally, we performed several behavioral tests to evaluate functional outcome. In summary, SB led to a remarkable reduction of the brain damage caused by HI. Moreover, the application of this HDACi protected against HI-induced loss of neuroblasts and oligodendrocyte precursor cells, as well as against neuroinflammation. The observed neuroprotective action suggests that SB may serve as a potential candidate for future treatment of HI-evoked injury in neonates.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Isquemia/metabolismo , Neurogênese/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Hipóxia-Isquemia Encefálica/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos Wistar
17.
PLoS One ; 10(5): e0128285, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26020770

RESUMO

The goal of this study was to determine whether a substantial decrease in adult neurogenesis influences epileptogenesis evoked by the intra-amygdala injection of kainic acid (KA). Cyclin D2 knockout (cD2 KO) mice, which lack adult neurogenesis almost entirely, were used as a model. First, we examined whether status epilepticus (SE) evoked by an intra-amygdala injection of KA induces cell proliferation in cD2 KO mice. On the day after SE, we injected BrdU into mice for 5 days and evaluated the number of DCX- and DCX/BrdU-immunopositive cells 3 days later. In cD2 KO control animals, only a small number of DCX+ cells was observed. The number of DCX+ and DCX/BrdU+ cells/mm of subgranular layer in cD2 KO mice increased significantly following SE (p<0.05). However, the number of newly born cells was very low and was significantly lower than in KA-treated wild type (wt) mice. To evaluate the impact of diminished neurogenesis on epileptogenesis and early epilepsy, we performed video-EEG monitoring of wt and cD2 KO mice for 16 days following SE. The number of animals with seizures did not differ between wt (11 out of 15) and cD2 KO (9 out of 12) mice. The median latency to the first spontaneous seizure was 4 days (range 2-10 days) in wt mice and 8 days (range 2-16 days) in cD2 KO mice and did not differ significantly between groups. Similarly, no differences were observed in median seizure frequency (wt: 1.23, range 0.1-3.4; cD2 KO: 0.57, range 0.1-2.0 seizures/day) or median seizure duration (wt: 51 s, range 23-103; cD2 KO: 51 s, range 23-103). Our results indicate that SE-induced epileptogenesis is not disrupted in mice with markedly reduced adult neurogenesis. However, we cannot exclude the contribution of reduced neurogenesis to the chronic epileptic state.


Assuntos
Tonsila do Cerebelo , Ciclina D2/deficiência , Ácido Caínico/efeitos adversos , Neurogênese , Convulsões , Estado Epiléptico , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/patologia , Tonsila do Cerebelo/fisiopatologia , Animais , Proteína Duplacortina , Eletroencefalografia , Ácido Caínico/farmacologia , Camundongos , Camundongos Knockout , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Convulsões/induzido quimicamente , Convulsões/genética , Convulsões/metabolismo , Convulsões/patologia , Convulsões/fisiopatologia , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/genética , Estado Epiléptico/metabolismo , Estado Epiléptico/patologia , Estado Epiléptico/fisiopatologia
18.
J Psychiatr Res ; 56: 106-11, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24931850

RESUMO

The neurogenesis hypothesis of major depression has two main facets. One states that the illness results from decreased neurogenesis while the other claims that the very functioning of antidepressants depends on increased neurogenesis. In order to verify the latter, we have used cyclin D2 knockout mice (cD2 KO mice), known to have virtually no adult brain neurogenesis, and we demonstrate that these mice successfully respond to chronic fluoxetine. After unpredictable chronic mild stress, mutant mice showed depression-like behavior in forced swim test, which was eliminated with chronic fluoxetine treatment, despite its lack of impact on adult hippocampal neurogenesis in cD2 KO mice. Our results suggest that new neurons are not indispensable for the action of antidepressants such as fluoxetine. Using forced swim test and tail suspension test, we also did not observe depression-like behavior in control cD2 KO mice, which argues against the link between decreased adult brain neurogenesis and major depression.


Assuntos
Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Fluoxetina/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Neurogênese/fisiologia , Animais , Bromodesoxiuridina , Doença Crônica , Ciclina D2/genética , Ciclina D2/metabolismo , Depressão/fisiopatologia , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Testes Neuropsicológicos , Natação , Incerteza
19.
Behav Neurosci ; 127(1): 1-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23244288

RESUMO

There is a broad discussion concerning the function of new neurons in the adult brain. An increasingly accepted hypothesis proposes their crucial role in spatial learning. In this work, however, we demonstrate adult cyclin D2 knockout (cD2 KO) mice, which lack adult hippocampal neurogenesis, are able to learn a spatial version of the Barnes maze. Similar to wild type (WT) controls, these mutant mice exhibited several indicators of learning during 6 days of training: successively shorter latency and distance, higher speed, and decreasing number of errors. WT and cD2 KO mice showed improved search strategies, which became increasingly spatial. During probe Trial 1, mutant mice attained the highest significant number of nose-pokes at the former target hole compared with all the other holes. Both WT and cD2 KO mice covered shorter distances during probe Trial 2, whereas the mutant mice showed higher speed. We also discuss the possibility that some of the observed differences displayed by cD2 KO mice during training and at the probe trials-for example, longer mean distance and more errors-are associated with a smaller hippocampal formation. Our results suggest that adult brain neurogenesis is not obligatory for learning the Barnes maze.


Assuntos
Ciclina D2/genética , Hipocampo/metabolismo , Aprendizagem em Labirinto/fisiologia , Neurogênese/genética , Neurônios/fisiologia , Animais , Comportamento Animal/fisiologia , Ciclina D2/metabolismo , Hipocampo/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Comportamento Espacial/fisiologia
20.
Behav Brain Res ; 248: 46-50, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23570858

RESUMO

Glycogen synthase kinase-3 (GSK-3), a multifunctional serine-threonine kinase, is an important regulator in numerous signaling pathways and processes including adult brain neurogenesis. GSK-3 (mal)functioning was implicated in many diseases, in particular neurological and behavioral disorders. We investigated the impact of altered levels of the GSK-3ß isoform on hippocampal size, number of doublecortin-positive cells, and hippocampal-dependent behaviors. Both GSK-3ß transgenic mice (GSK-3ß[S9A] mice) and GSK-3ß neuron-specific knockout (GSK-3ß(n-/-)) mice, showed reduced size of the dentate gyrus (DG) and were impaired in three hippocampal-dependent, species-typical behavioral tasks: digging, marble burying and nest building. We further demonstrate that the number of differentiating, doublecortin-positive new neurons is reduced in GSK-3ß[S9A] mice, but not in GSK-3ß(n-/-) mice. We conclude that GSK-3ß activity must be critically controlled to allow wild type-like volume of the dentate gyrus and for normal execution of hippocampal-dependent, species-typical behavior.


Assuntos
Comportamento Animal/fisiologia , Giro Denteado/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Hipocampo/metabolismo , Camundongos Knockout/metabolismo , Camundongos Transgênicos/metabolismo , Animais , Glicogênio Sintase Quinase 3 beta , Camundongos , Neurogênese/fisiologia , Neurônios/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa