Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 20(16): 2082-2092, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31233266

RESUMO

The studied enzyme-based biocatalytic system mimics NXOR Boolean logic gate, which is a logical operator that corresponds to equality in Boolean algebra. It gives the functional value true (1) if both functional arguments (input signals) have the same logical value (0,0 or 1,1), and false (0) if they are different (0,1 or 1,0). The output signal producing reaction is catalyzed by pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH), which is inhibited at acidic and basic pH values. Two other reactions catalyzed by esterase and urease produce acetic acid and ammonium hydroxide, respectively, shifting solution pH from the optimum pH for PQQ-GDH to acidic and basic values (1,0 and 0,1 input combinations, respectively), thus switching the enzyme activity off (output 0). When the input signals are not applied (0,0 combination) or both applied compensating each other (1,1 combination) the optimum pH is preserved, thus keeping PQQ-GDH running at the high rate (output 1). The biocatalytic cascade mimicking the NXOR gate was characterized optically and electrochemically. In the electrochemical experiments the PQQ-GDH enzyme communicated electronically with a conducting electrode support, thus resulting in the electrocatalytic current when signal combinations 0,0 and 1,1 were applied. The logic gate operation, when it was realized electrochemically, was also extended to the biomolecular release controlled by the gate. The release system included two electrodes, one performing the NXOR gate and another one activated for the release upon electrochemically stimulated alginate hydrogel dissolution. The studied system represents a general approach to the biocatalytic realization of the NXOR logic gate, which can be included in different catalytic cascades mimicking operation of concatenated gates in sophisticated logic circuitries.


Assuntos
Computadores Moleculares , Esterases/química , Glucose Desidrogenase/química , Lógica , Urease/química , Acetatos/química , Alginatos/química , Animais , Canavalia/enzimologia , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Fluoresceína-5-Isotiocianato/química , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Ferro/química , Nanotubos de Carbono/química , Suínos , Ureia/química
2.
Chemphyschem ; 19(22): 3035-3043, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30239091

RESUMO

Magnetic nanoparticles (MNPs) functionalized with various enzymes (amyloglucosidase, glucose oxidase and horseradish peroxidase) were used to perform biocatalytic cascades in two different states, solute suspension or aggregated, produced in the absence or presence of an external magnetic field. The biocatalytic reactions proceeded through bulk solution diffusion of intermediate substrates or substrate channeling, when the systems were dispersed or aggregated, respectively. The both pathways have shown very similar kinetics, unless the intermediate substrate was consumed by an additional biocatalytic process called "filter" for brevity. In the presence of the "filter" process, the diffusional process in the bulk solution was significantly inhibited, while the process based on the substrate channeling was still active. The systems were switched reversibly between the inhibited dispersed state and the active aggregated state by removing and applying the external magnetic field, respectively. The signal-controlled biocatalytic cascades were considered as Boolean logic circuits with the inputs consisting of biomolecules and the magnetic field on-off.

3.
Chemphyschem ; 18(20): 2908-2915, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28745425

RESUMO

We report an experimental realization of a biochemical XOR gate function that avoids many of the pitfalls of earlier realizations based on biocatalytic cascades. Inputs-represented by pairs of chemicals-cross-react to largely cancel out when both are nearly equal. The cross-reaction can be designed to also optimize gate functioning for noise handling. When not equal, the residual inputs are further processed to result in the output of the XOR type, by biocatalytic steps that allow for further gate-function optimization. The quality of the realized XOR gate is theoretically analyzed.


Assuntos
Álcool Desidrogenase/metabolismo , Oxirredutases do Álcool/metabolismo , Biocatálise , Glucose Oxidase/metabolismo , Hexoquinase/metabolismo , NAD/metabolismo , Peroxidase/metabolismo , Armoracia/enzimologia , Aspergillus niger/enzimologia , Modelos Moleculares , Pichia/enzimologia , Saccharomyces cerevisiae/enzimologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa